Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
A Progressive Plane Detection Filtering Method for Airborne LiDAR Data in Forested Landscapes
Ground filtering is necessary in processing airborne light detection and ranging (LiDAR) point clouds for forestry applications. This study proposes a progressive plane detection filtering (PPDF) method. First, the method uses multi-scale planes to characterize terrain, i.e., the local terrain with large slope variations is represented by small-scale planes, and vice versa. The planes are detected in local point clouds by the random sample consensus method with decreasing plane sizes. The reliability of the planes to represent local terrain is evaluated and the planes with optimal sizes are selected according to evaluation results. Then, ground seeds are identified by selecting the interior points of the planes. Finally, ground points are iteratively extracted based on the reference terrain, which is constructed using evenly distributed neighbor ground points. These neighbor points are identified by selecting the nearest neighbor points of multiple subspaces, which are divided from the local space with an unclassified point as center point. PPDF was tested in six sites with various terrain and vegetation characteristics. Results showed that PPDF was more accurate and robust compared to the classic filtering methods including maximum slope, progressive morphology, cloth simulation, and progressive triangulated irregular network densification filtering methods, with the smallest average total error and standard deviation of 3.42% and 2.45% across all sites. Moreover, the sensitivity of PPDF to parameters was low and these parameters can be set as fixed values. Therefore, PPDF is effective and easy-to-use for filtering airborne LiDAR data.
A Progressive Plane Detection Filtering Method for Airborne LiDAR Data in Forested Landscapes
Ground filtering is necessary in processing airborne light detection and ranging (LiDAR) point clouds for forestry applications. This study proposes a progressive plane detection filtering (PPDF) method. First, the method uses multi-scale planes to characterize terrain, i.e., the local terrain with large slope variations is represented by small-scale planes, and vice versa. The planes are detected in local point clouds by the random sample consensus method with decreasing plane sizes. The reliability of the planes to represent local terrain is evaluated and the planes with optimal sizes are selected according to evaluation results. Then, ground seeds are identified by selecting the interior points of the planes. Finally, ground points are iteratively extracted based on the reference terrain, which is constructed using evenly distributed neighbor ground points. These neighbor points are identified by selecting the nearest neighbor points of multiple subspaces, which are divided from the local space with an unclassified point as center point. PPDF was tested in six sites with various terrain and vegetation characteristics. Results showed that PPDF was more accurate and robust compared to the classic filtering methods including maximum slope, progressive morphology, cloth simulation, and progressive triangulated irregular network densification filtering methods, with the smallest average total error and standard deviation of 3.42% and 2.45% across all sites. Moreover, the sensitivity of PPDF to parameters was low and these parameters can be set as fixed values. Therefore, PPDF is effective and easy-to-use for filtering airborne LiDAR data.
A Progressive Plane Detection Filtering Method for Airborne LiDAR Data in Forested Landscapes
Shangshu Cai (Autor:in) / Xinlian Liang (Autor:in) / Sisi Yu (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas
Online Contents | 2016
|Large-scale road detection in forested mountainous areas using airborne topographic lidar data
Online Contents | 2016
|Ground point extraction by iterative labeling of airborne LiDAR data in a forested area
Springer Verlag | 2015
|Ground point extraction by iterative labeling of airborne LiDAR data in a forested area
Online Contents | 2015
|