Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Systematic Mix Design Study on Geopolymers—Prediction of Compressive Strength
Due to the demand for decarbonization of the construction sector, research on alkali-activated binders and material-minimized carbon-reinforced structures has gained momentum in recent years. Most of the research into alkali-activated binders is focused on developing market-ready alternatives, mainly using a trial-and-error approach. In this study, an attempt is made to identify and quantify the factors influencing compressive strength development. Due to their worldwide availability, investigations are being carried out into binders based on calcined clays and natural pozzolans. The goal is to develop a method to produce tailor-made AAB for continuous manufacturing methods to combine carbon reinforcement and alkali-activated materials. For this purpose, an experimental matrix with 20 variation parameters was set up, in which the activator solution and the precursor composition varied. The design of the experiments was used to minimize the number of experiments. It was shown that no single factor is responsible for the development of compressive strength but instead involves several interacting factors. It was possible to find empirical formulas for predicting the compressive strength after 2, 7, and 28 days.
Systematic Mix Design Study on Geopolymers—Prediction of Compressive Strength
Due to the demand for decarbonization of the construction sector, research on alkali-activated binders and material-minimized carbon-reinforced structures has gained momentum in recent years. Most of the research into alkali-activated binders is focused on developing market-ready alternatives, mainly using a trial-and-error approach. In this study, an attempt is made to identify and quantify the factors influencing compressive strength development. Due to their worldwide availability, investigations are being carried out into binders based on calcined clays and natural pozzolans. The goal is to develop a method to produce tailor-made AAB for continuous manufacturing methods to combine carbon reinforcement and alkali-activated materials. For this purpose, an experimental matrix with 20 variation parameters was set up, in which the activator solution and the precursor composition varied. The design of the experiments was used to minimize the number of experiments. It was shown that no single factor is responsible for the development of compressive strength but instead involves several interacting factors. It was possible to find empirical formulas for predicting the compressive strength after 2, 7, and 28 days.
Systematic Mix Design Study on Geopolymers—Prediction of Compressive Strength
Henning Kruppa (Autor:in) / Anya Vollpracht (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Application of fuzzy logic for prediction compressive strength of OPC based geopolymers
British Library Online Contents | 2012
|Compressive strength of tungsten mine waste- and metakaolinbased geopolymers
BASE | 2014
|Factors influencing the compressive strength of fly ash based geopolymers
Online Contents | 2016
|