Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Energy-Efficient and Secure Load Balancing Technique for SDN-Enabled Fog Computing
The number of client applications on the fog computing layer is increasing due to advancements in the Internet of Things (IoT) paradigm. Fog computing plays a significant role in reducing latency and enhancing resource usage for IoT users’ tasks. Along with its various benefits, fog computing also faces several challenges, including challenges related to resource overloading, security, node placement, scheduling, and energy consumption. In fog computing, load balancing is a difficult challenge due to the increased number of IoT devices and requests, which requires an equal load distribution throughout all available resources. In this study, we proposed a secure and energy-aware fog computing architecture, and we implemented a load-balancing technique to improve the complete utilization of resources with an SDN-enabled fog environment. A deep belief network (DBN)-based intrusion detection method was also implemented as part of the proposed techniques to reduce workload communication delays in the fog layer. The simulation findings showed that the proposed technique provided an efficient method of load balancing in a fog environment, minimizing the average response time, average energy consumption, and communication delay by 15%, 23%, and 10%, respectively, as compared with other existing techniques.
Energy-Efficient and Secure Load Balancing Technique for SDN-Enabled Fog Computing
The number of client applications on the fog computing layer is increasing due to advancements in the Internet of Things (IoT) paradigm. Fog computing plays a significant role in reducing latency and enhancing resource usage for IoT users’ tasks. Along with its various benefits, fog computing also faces several challenges, including challenges related to resource overloading, security, node placement, scheduling, and energy consumption. In fog computing, load balancing is a difficult challenge due to the increased number of IoT devices and requests, which requires an equal load distribution throughout all available resources. In this study, we proposed a secure and energy-aware fog computing architecture, and we implemented a load-balancing technique to improve the complete utilization of resources with an SDN-enabled fog environment. A deep belief network (DBN)-based intrusion detection method was also implemented as part of the proposed techniques to reduce workload communication delays in the fog layer. The simulation findings showed that the proposed technique provided an efficient method of load balancing in a fog environment, minimizing the average response time, average energy consumption, and communication delay by 15%, 23%, and 10%, respectively, as compared with other existing techniques.
Energy-Efficient and Secure Load Balancing Technique for SDN-Enabled Fog Computing
Jagdeep Singh (Autor:in) / Parminder Singh (Autor:in) / El Mehdi Amhoud (Autor:in) / Mustapha Hedabou (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
An efficient dynamic load balancing algorithm
British Library Online Contents | 2014
|DOAJ | 2020
|