Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Contrasts in Sustainability between Hub-Based and Point-to-Point Airline Networks
Airline hubs are often defined as nodes with a high degree of connectivity. Connectivity is measured by the “degree” of the node. The degree distribution of hub networks tends to have a convex shape (curved towards the origin), while point-to-point networks have a higher number of high-degree nodes and a concave shape. This study aims to classify airline networks based on their hub orientation, expanding our understanding of network differences. The analysis in this paper involves fitting a power-law distribution, determining the range of degree distribution, and calculating the distribution of betweenness. These analyses provide insight into the classification of each airline. Each measurement helps to clarify the ambiguity in other scores. The goal is to establish a small set of rules that can clearly distinguish between the main types of networks. The classification includes four types of networks: One-hub, P2P (point-to-point), Multi-hub, and Complex networks. There is a well-recognized empirical distinction between hub networks, which have a few places with large betweenness, and point-to-point cases, which have a larger number of places with moderate betweenness. The significance of these results in terms of geographic importance is demonstrated by sorting 284 different airline networks based on these dimensions. These findings are expected to provide valuable information about the resilience and recovery of a network, as networks with many long-range connections are particularly vulnerable to a decrease in traffic. Additionally, these results have implications for the ability of networks to recover from a downturn.
Contrasts in Sustainability between Hub-Based and Point-to-Point Airline Networks
Airline hubs are often defined as nodes with a high degree of connectivity. Connectivity is measured by the “degree” of the node. The degree distribution of hub networks tends to have a convex shape (curved towards the origin), while point-to-point networks have a higher number of high-degree nodes and a concave shape. This study aims to classify airline networks based on their hub orientation, expanding our understanding of network differences. The analysis in this paper involves fitting a power-law distribution, determining the range of degree distribution, and calculating the distribution of betweenness. These analyses provide insight into the classification of each airline. Each measurement helps to clarify the ambiguity in other scores. The goal is to establish a small set of rules that can clearly distinguish between the main types of networks. The classification includes four types of networks: One-hub, P2P (point-to-point), Multi-hub, and Complex networks. There is a well-recognized empirical distinction between hub networks, which have a few places with large betweenness, and point-to-point cases, which have a larger number of places with moderate betweenness. The significance of these results in terms of geographic importance is demonstrated by sorting 284 different airline networks based on these dimensions. These findings are expected to provide valuable information about the resilience and recovery of a network, as networks with many long-range connections are particularly vulnerable to a decrease in traffic. Additionally, these results have implications for the ability of networks to recover from a downturn.
Contrasts in Sustainability between Hub-Based and Point-to-Point Airline Networks
Morton E. O’Kelly (Autor:in) / Yongha Park (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Assessment of New Hub‐and‐Spoke and Point‐to‐Point Airline Network Configurations
Taylor & Francis Verlag | 2007
|Assessment of New Hub-and-Spoke and Point-to-Point Airline Network Configurations
Online Contents | 2007
|British Library Online Contents | 1997
|Contrasts between Scottish and English house planning
Engineering Index Backfile | 1947
|Contrasts, issues, preferences
British Library Conference Proceedings | 1999
|