Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Experimental Research on Motion Analysis Model and Trajectory Planning of GLT Palletizing Robot
To improve wood structure processing efficiency, a palletizing robot suitable for loading and unloading glued laminated timber (GLT) has been developed. The robot comprises a six-axis connecting rod mechanism and a sponge sucker as a grasping actuator, which can enable the intelligent automatic loading and unloading and palletizing operations for small-sized GLT. Matlab robotics was used to construct the kinematic model of the GLT loading and unloading robot. Based on Matlab and Monte Carlo methods, the robot workspace was simulated and analyzed to determine the scope of the robot workspace. Using the high-order quintic and sixtic polynomial curve interpolation method, the trajectory of wood structure parts in the process of loading and unloading operations was planned, respectively, under the two conditions of staying and not staying. Tests verified that the simulation results of the pose of the end-effector were consistent with the actual pose of the robot. The robot’s working range could be analyzed intuitively and effectively. The robot’s operation trajectory planning provides data support and a parameter basis for the automatic control and program design of a loading, unloading and palletizing robot.
Experimental Research on Motion Analysis Model and Trajectory Planning of GLT Palletizing Robot
To improve wood structure processing efficiency, a palletizing robot suitable for loading and unloading glued laminated timber (GLT) has been developed. The robot comprises a six-axis connecting rod mechanism and a sponge sucker as a grasping actuator, which can enable the intelligent automatic loading and unloading and palletizing operations for small-sized GLT. Matlab robotics was used to construct the kinematic model of the GLT loading and unloading robot. Based on Matlab and Monte Carlo methods, the robot workspace was simulated and analyzed to determine the scope of the robot workspace. Using the high-order quintic and sixtic polynomial curve interpolation method, the trajectory of wood structure parts in the process of loading and unloading operations was planned, respectively, under the two conditions of staying and not staying. Tests verified that the simulation results of the pose of the end-effector were consistent with the actual pose of the robot. The robot’s working range could be analyzed intuitively and effectively. The robot’s operation trajectory planning provides data support and a parameter basis for the automatic control and program design of a loading, unloading and palletizing robot.
Experimental Research on Motion Analysis Model and Trajectory Planning of GLT Palletizing Robot
Rui Gao (Autor:in) / Wei Zhang (Autor:in) / Guofu Wang (Autor:in) / Xiaohuan Wang (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Time Optimal Path Planning of Palletizing Robot
British Library Conference Proceedings | 2014
|Bagging and palletizing technology
British Library Online Contents | 2004
Tailored-made palletizing lines
British Library Online Contents | 2005
|Optimal Trajectory Planning for Robot
British Library Conference Proceedings | 2011
|Trends in the packing and palletizing of cement
Tema Archiv | 2008
|