Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Prediction of Ship Trajectory in Nearby Port Waters Based on Attention Mechanism Model
In recent years, the prediction of ship trajectory based on automatic identification system (AIS) data has become an important area of research. Among the existing studies, most focus on a single ship to extract features and train models for trajectory prediction. However, in a real situation, AIS contains a variety of ships and trajectories that need a general model to serve various cases. Therefore, in this paper, we include an attentional mechanism to train a multi-trajectory prediction model. There are three major processes in our model. Firstly, we improve the traditional density-based spatial clustering of applications with noise (DBSCAN) algorithm and apply it to trajectory clustering. According to the clustering process, ship trajectories can be automatically separated by groups. Secondly, we propose a feature extraction method based on a hierarchical clustering method for a trajectory group. According to the extraction process, typical trajectories can be obtained for individual groups. Thirdly, we propose a multi-trajectory prediction model based on an attentional mechanism. The proposed model was trained using typical trajectories and tested using original trajectories. In the experiments, we chose nearby port waters as the target, which contain various ships and trajectories, to validate our model. The experimental results show that the mean absolute errors (MAEs) of the model in longitude (°) and latitude (°) compared with the baseline methods were reduced by 8.69% and 6.12%.
Prediction of Ship Trajectory in Nearby Port Waters Based on Attention Mechanism Model
In recent years, the prediction of ship trajectory based on automatic identification system (AIS) data has become an important area of research. Among the existing studies, most focus on a single ship to extract features and train models for trajectory prediction. However, in a real situation, AIS contains a variety of ships and trajectories that need a general model to serve various cases. Therefore, in this paper, we include an attentional mechanism to train a multi-trajectory prediction model. There are three major processes in our model. Firstly, we improve the traditional density-based spatial clustering of applications with noise (DBSCAN) algorithm and apply it to trajectory clustering. According to the clustering process, ship trajectories can be automatically separated by groups. Secondly, we propose a feature extraction method based on a hierarchical clustering method for a trajectory group. According to the extraction process, typical trajectories can be obtained for individual groups. Thirdly, we propose a multi-trajectory prediction model based on an attentional mechanism. The proposed model was trained using typical trajectories and tested using original trajectories. In the experiments, we chose nearby port waters as the target, which contain various ships and trajectories, to validate our model. The experimental results show that the mean absolute errors (MAEs) of the model in longitude (°) and latitude (°) compared with the baseline methods were reduced by 8.69% and 6.12%.
Prediction of Ship Trajectory in Nearby Port Waters Based on Attention Mechanism Model
Junhao Jiang (Autor:in) / Yi Zuo (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
A hybrid prediction model of vessel trajectory based on attention mechanism and CNN-GRU
SAGE Publications | 2024
|Big Data—Based Estimation for Ship Safety Distance Distribution in Port Waters
British Library Online Contents | 2015
|Modelling and simulation of ship collisions in port and coastal waters
SAGE Publications | 2021
|