Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The Current Oxygen and Hydrogen Isotopic Status of Lake Baikal
This study revises the δ18O and δ2H status of Lake Baikal. The mean values of δ18O and δ2H varied from −15.9 to −15.5‰ and from −123.2 to 122.2‰, respectively, for the past 30 yr. The isotopic composition of the lake remained more ‘‘light” compared to the regional precipitation and rivers inflows. The isotopic composition of the lake has begun to change since ca.1920 after the Little Ice Age; however, Lake Baikal still has not reached the isotopically steady state in the present. The calculated composition of the steady-state should be −12.3‰ for δ18O and −103.6‰ for δ2H. If regional climate parameters do not change dramatically, Lake Baikal will reach these values in ca. 226 yr. Based on isotopic fingerprints of the upper (0 to 150 m) and near-bottom layers (ca. 150 m from the bottom floor), the renewal in the southern and central basins of Lake Baikal has occurred recently compared to the northern Baikal basin, and the size of the mixing-cell of downwelling is close to 30 km.
The Current Oxygen and Hydrogen Isotopic Status of Lake Baikal
This study revises the δ18O and δ2H status of Lake Baikal. The mean values of δ18O and δ2H varied from −15.9 to −15.5‰ and from −123.2 to 122.2‰, respectively, for the past 30 yr. The isotopic composition of the lake remained more ‘‘light” compared to the regional precipitation and rivers inflows. The isotopic composition of the lake has begun to change since ca.1920 after the Little Ice Age; however, Lake Baikal still has not reached the isotopically steady state in the present. The calculated composition of the steady-state should be −12.3‰ for δ18O and −103.6‰ for δ2H. If regional climate parameters do not change dramatically, Lake Baikal will reach these values in ca. 226 yr. Based on isotopic fingerprints of the upper (0 to 150 m) and near-bottom layers (ca. 150 m from the bottom floor), the renewal in the southern and central basins of Lake Baikal has occurred recently compared to the northern Baikal basin, and the size of the mixing-cell of downwelling is close to 30 km.
The Current Oxygen and Hydrogen Isotopic Status of Lake Baikal
Andrey Fedotov (Autor:in) / Ruslan Gnatovsky (Autor:in) / Vadim Blinov (Autor:in) / Maria Sakirko (Autor:in) / Valentina Domysheva (Autor:in) / Olga Stepanova (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
The current problems of Lake Baikal ecosystem conservation
Wiley | 1998
|Trace element accumulation in Baikal seal (Phoca sibirica) from the Lake Baikal
Online Contents | 1996
|Terpanes from oil shows of Lake Baikal
Springer Verlag | 2006
|