Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Impacts of large-scale Saharan solar farms on the global terrestrial carbon cycle
Amassing the available solar energy over the Sahara desert, through the installation of a large-scale solar farm, would satisfy the world’s current electricity needs. However, such land use changes may affect the global carbon cycle, possibly offsetting mitigation efforts. Here a fully coupled Earth System model EC-Earth was used to investigate the impact of a Saharan solar farm on the terrestrial carbon cycle, simulated with prescribed reduced surface albedo approximating the albedo effect of photovoltaic solar panels over the Sahara desert. The resulting changes to the carbon cycle were an enhancement of the carbon sink across Northern Africa, particularly around the Sahel but a simultaneous weakening of the carbon sink in the Amazon basin. This is observed through spatial pattern changes to the values of net biome production (NBP), more evident during Northern Hemisphere summer season. NBP changes are contributed by competing responses in the net primary production and heterotrophic respiration rates. These changes to carbon exchange correspond to a wetter and warmer climate occurring in Northern Africa and a drier and warmer climate in the Amazon, with stronger driving effects of precipitation. Due to these coupled responses and complex teleconnections, thorough investigation of remote impacts of solar farms are needed to avoid unintended consequences on the terrestrial carbon cycle.
Impacts of large-scale Saharan solar farms on the global terrestrial carbon cycle
Amassing the available solar energy over the Sahara desert, through the installation of a large-scale solar farm, would satisfy the world’s current electricity needs. However, such land use changes may affect the global carbon cycle, possibly offsetting mitigation efforts. Here a fully coupled Earth System model EC-Earth was used to investigate the impact of a Saharan solar farm on the terrestrial carbon cycle, simulated with prescribed reduced surface albedo approximating the albedo effect of photovoltaic solar panels over the Sahara desert. The resulting changes to the carbon cycle were an enhancement of the carbon sink across Northern Africa, particularly around the Sahel but a simultaneous weakening of the carbon sink in the Amazon basin. This is observed through spatial pattern changes to the values of net biome production (NBP), more evident during Northern Hemisphere summer season. NBP changes are contributed by competing responses in the net primary production and heterotrophic respiration rates. These changes to carbon exchange correspond to a wetter and warmer climate occurring in Northern Africa and a drier and warmer climate in the Amazon, with stronger driving effects of precipitation. Due to these coupled responses and complex teleconnections, thorough investigation of remote impacts of solar farms are needed to avoid unintended consequences on the terrestrial carbon cycle.
Impacts of large-scale Saharan solar farms on the global terrestrial carbon cycle
Katherine Power (Autor:in) / Zhengyao Lu (Autor:in) / Qiong Zhang (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Potential Climatic Impacts and Reliability of Large-Scale Offshore Wind Farms
DSpace@MIT | 2011
|Potential climatic impacts and reliability of large-scale offshore wind farms
IOP Institute of Physics | 2011
|A review: the potential impact of large-scale solar farms (LSSFs) on the water cycle
Springer Verlag | 2025
|Impacts devalue the potential of large-scale terrestrial CO2 removal through biomass plantations
BASE | 2016
|