Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
A Statistical Approach for the Assessment of Saturated Hydraulic Conductivity Values of Unsaturated Urban Soils Obtained by Field Infiltration Tests
An evaluation and interpretation of the obtained results focusing the hydraulic conductivity of anthropogenic saturated soil, k, has been performed on an urban area vadose zone. Four methods have been used to quantify the hydraulic conductivity: the tube infiltrometer (TI), the double ring infiltrometer (DRI), the minidisk infiltrometer (MDI) and the inversed auger (IA). This study comprises (a) a comparative analysis of the results obtained by each method between several trials performed at the same location and at distinct locations within the plot, (b) a comparative analysis of the results of all methods, and (c) a statistical analysis regarding the correlation between k as a dependent variable and the infiltration area A as the main independent variable. To select the k values close or corresponding to the saturation state for TI and IA methods, a domain of validity was defined. A new parameter, k* = k/A, was introduced which represents the hydraulic conductivity corresponding to an infiltration surface unit (1 cm2). An increase in this ratio with the increase in the infiltration area, within the same method or between different methods, indicates the heterogeneity of the terrain but especially the fact that the infiltration area no longer represents the main independent variable on which the hydraulic conductivity depends for the saturated state.
A Statistical Approach for the Assessment of Saturated Hydraulic Conductivity Values of Unsaturated Urban Soils Obtained by Field Infiltration Tests
An evaluation and interpretation of the obtained results focusing the hydraulic conductivity of anthropogenic saturated soil, k, has been performed on an urban area vadose zone. Four methods have been used to quantify the hydraulic conductivity: the tube infiltrometer (TI), the double ring infiltrometer (DRI), the minidisk infiltrometer (MDI) and the inversed auger (IA). This study comprises (a) a comparative analysis of the results obtained by each method between several trials performed at the same location and at distinct locations within the plot, (b) a comparative analysis of the results of all methods, and (c) a statistical analysis regarding the correlation between k as a dependent variable and the infiltration area A as the main independent variable. To select the k values close or corresponding to the saturation state for TI and IA methods, a domain of validity was defined. A new parameter, k* = k/A, was introduced which represents the hydraulic conductivity corresponding to an infiltration surface unit (1 cm2). An increase in this ratio with the increase in the infiltration area, within the same method or between different methods, indicates the heterogeneity of the terrain but especially the fact that the infiltration area no longer represents the main independent variable on which the hydraulic conductivity depends for the saturated state.
A Statistical Approach for the Assessment of Saturated Hydraulic Conductivity Values of Unsaturated Urban Soils Obtained by Field Infiltration Tests
Traian Ghibus (Autor:in) / Dragos Gaitanaru (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Field-saturated hydraulic conductivity of unsaturated soils from laboratory constant-head well tests
British Library Conference Proceedings | 2003
|Hydraulic Conductivity Assessment of Unsaturated Soils
British Library Conference Proceedings | 1994
|Field-saturated hydraulic conductivity of soils from laboratory constant-head well tests
Online Contents | 2004
|