Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Urban Green Systems for Improving Pedestrian Thermal Comfort and Walkability in Future Climate Scenarios in London
The purpose of this research is to investigate the thermal impact of urban green systems (UGS) (trees and living facades) and high albedo pavements on reducing the urban heat island (UHI) effect in London at the pedestrian street level. The research assesses the impact of UGS by suggesting practicable urban greenery-covering densities (25% and 50%) and using high albedo pavement in current and future climatic scenarios (2050 and 2080). This approach is intended to encourage pedestrians to walk longer distances for longer durations during the warmer months, following the Transport for London’s (TfL) 2017 Healthy Streets initiative. The research seeks to measure the advantages and assess the possible impact on the comfort and activities within urban streets. The study adopts a quantitative research design using ENVI-met modelling and questionnaires. Simulation results, the subject of this paper, confirmed that, across three climatic scenarios, the optimal UGS for thermal comfort is 50% trees followed by 25% trees, dependent on street orientation and solar access. Living facades (LF) with 25% and 50% covering had no discernible effect on the comfort of pedestrians, whereas high albedo pavement increases heat stress.
Urban Green Systems for Improving Pedestrian Thermal Comfort and Walkability in Future Climate Scenarios in London
The purpose of this research is to investigate the thermal impact of urban green systems (UGS) (trees and living facades) and high albedo pavements on reducing the urban heat island (UHI) effect in London at the pedestrian street level. The research assesses the impact of UGS by suggesting practicable urban greenery-covering densities (25% and 50%) and using high albedo pavement in current and future climatic scenarios (2050 and 2080). This approach is intended to encourage pedestrians to walk longer distances for longer durations during the warmer months, following the Transport for London’s (TfL) 2017 Healthy Streets initiative. The research seeks to measure the advantages and assess the possible impact on the comfort and activities within urban streets. The study adopts a quantitative research design using ENVI-met modelling and questionnaires. Simulation results, the subject of this paper, confirmed that, across three climatic scenarios, the optimal UGS for thermal comfort is 50% trees followed by 25% trees, dependent on street orientation and solar access. Living facades (LF) with 25% and 50% covering had no discernible effect on the comfort of pedestrians, whereas high albedo pavement increases heat stress.
Urban Green Systems for Improving Pedestrian Thermal Comfort and Walkability in Future Climate Scenarios in London
Hashem Taher (Autor:in) / Heba Elsharkawy (Autor:in) / Haitham Farouk Rashed (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Smart Pedestrian Network: An Integrated Conceptual Model for Improving Walkability
Springer Verlag | 2020
|Walkability Indicators for Pedestrian-Friendly Design
British Library Online Contents | 2014
|Improving Walkability in the City: Urban and Personal Comfort and the Need for Cultural Shifts
Springer Verlag | 2024
|