Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Numerical Analysis Of Flat Slabs With Spherical Voids Subjected To Shear Force
Full flat slabs can be enhanced by using spherical voids to replace the unemployed concrete from the core part of the slab. Therefore we get low self-weighted slabs that can reach a high range of spans, a low material consumption compared to classical solutions used so far. On the other hand, the upsides of these slabs pale against the insecurity in design stage about their punching and shear force behaviour. In this paper it is presented a parametric study about shear force behaviour of flat slabs with spherical voids used in standard condition service. The study was made using the Atena 3D finit element design software, starting form a numerical model gauged on experimental results on real models – scale 1:1. Based on these lab results, the model’s validation was made by overlapping the load – displacement experimental curves on the curves yielded from numerical analyses. The results indicate that under a longitudinal reinforcement rate of lower than 0.50%, flat slabs with spherical voids don’t fail to shear force and over this value the capable shear force decreases in comparison with solid slabs, as the reinforcement rate increases.
Numerical Analysis Of Flat Slabs With Spherical Voids Subjected To Shear Force
Full flat slabs can be enhanced by using spherical voids to replace the unemployed concrete from the core part of the slab. Therefore we get low self-weighted slabs that can reach a high range of spans, a low material consumption compared to classical solutions used so far. On the other hand, the upsides of these slabs pale against the insecurity in design stage about their punching and shear force behaviour. In this paper it is presented a parametric study about shear force behaviour of flat slabs with spherical voids used in standard condition service. The study was made using the Atena 3D finit element design software, starting form a numerical model gauged on experimental results on real models – scale 1:1. Based on these lab results, the model’s validation was made by overlapping the load – displacement experimental curves on the curves yielded from numerical analyses. The results indicate that under a longitudinal reinforcement rate of lower than 0.50%, flat slabs with spherical voids don’t fail to shear force and over this value the capable shear force decreases in comparison with solid slabs, as the reinforcement rate increases.
Numerical Analysis Of Flat Slabs With Spherical Voids Subjected To Shear Force
Bindea M. (Autor:in) / Chezan Claudia Maria (Autor:in) / Puskas A. (Autor:in)
2015
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Punching shear of flat slabs subjected to earthquakes
British Library Conference Proceedings | 1999
|Internal force distribution in RC slabs subjected to punching shear
Elsevier | 2017
|