Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Hyperspectral Classification of Hazardous Materials Based on Deep Learning
The identification of hazardous materials is a key measure in the prevention and control of fire and explosion disasters. Conventional techniques used to identify hazardous materials include contact detection and post-sampling laboratory testing, which cannot meet the needs of extreme environments, where personnel and equipment are not accessible for on-site detection. To address this problem, this paper proposes a method for the classification and identification of hazardous materials based on convolutional neural networks, which can achieve non-contact remote detection of hazardous materials. Firstly, a dataset containing 1800 hyperspectral images of hazardous materials, which can be used for deep learning, is constructed based on the hazardous materials hyperspectral data cube. Secondly, based on this, an improved ResNet50-based classification method for hazardous materials is proposed, which innovatively utilizes a classification network based on offset sampling convolution and split context-gated convolution. The results show that the method can achieve 93.9% classification accuracy for hazardous materials, which is 1% better than the classification accuracy of the original ResNet50 network. The network also has high performance under small data volume conditions, effectively solving the problem of low classification accuracy due to small data volume and blurred image data features of labelled hazardous material images. In addition, it was found that offset sampling convolution and split context-gated convolution showed synergistic effects in improving the performance of the network.
Hyperspectral Classification of Hazardous Materials Based on Deep Learning
The identification of hazardous materials is a key measure in the prevention and control of fire and explosion disasters. Conventional techniques used to identify hazardous materials include contact detection and post-sampling laboratory testing, which cannot meet the needs of extreme environments, where personnel and equipment are not accessible for on-site detection. To address this problem, this paper proposes a method for the classification and identification of hazardous materials based on convolutional neural networks, which can achieve non-contact remote detection of hazardous materials. Firstly, a dataset containing 1800 hyperspectral images of hazardous materials, which can be used for deep learning, is constructed based on the hazardous materials hyperspectral data cube. Secondly, based on this, an improved ResNet50-based classification method for hazardous materials is proposed, which innovatively utilizes a classification network based on offset sampling convolution and split context-gated convolution. The results show that the method can achieve 93.9% classification accuracy for hazardous materials, which is 1% better than the classification accuracy of the original ResNet50 network. The network also has high performance under small data volume conditions, effectively solving the problem of low classification accuracy due to small data volume and blurred image data features of labelled hazardous material images. In addition, it was found that offset sampling convolution and split context-gated convolution showed synergistic effects in improving the performance of the network.
Hyperspectral Classification of Hazardous Materials Based on Deep Learning
Yanlong Sun (Autor:in) / Jinxing Hu (Autor:in) / Diping Yuan (Autor:in) / Yaowen Chen (Autor:in) / Yangyang Liu (Autor:in) / Qi Zhang (Autor:in) / Wenjiang Chen (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Discriminative Robust Deep Dictionary Learning for Hyperspectral Image Classification
Online Contents | 2017
|Hyperspectral Image Classification Using Semi-supervised Deep Learning Strategies
Springer Verlag | 2021
|Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification
Online Contents | 2017
|Learning and Transferring Deep Joint Spectral-Spatial Features for Hyperspectral Classification
Online Contents | 2017
|