Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Effect of Poly(ethylene glycol)–Poly(propylene glycol) Triblock Copolymers on Autogenous Shrinkage and Properties of Cement Pastes
This study investigates the hydration, microstructure, autogenous shrinkage, electrical resistivity, and mechanical properties of Portland cement pastes modified with PEG-PPG triblock copolymers with varied molecular weights. The early age properties including setting time and hydration heat were examined using the Vicat test and isothermal calorimetry. The hydration products and pore size distribution were analyzed using thermogravimetric analysis (TGA) and nitrogen adsorption, respectively. Mechanical properties and electrical resistivity were evaluated using the compressive strength test and electrochemical impedance spectroscopy (EIS). It was shown that the addition of the copolymers reduced the surface tension of the cement paste pore solution due to the presence of a hydrophobic block (PPG) in the molecular structure of the copolymers. The setting time and hydration heat were relatively similar in the control paste as well as the pastes modified with the copolymers. The results showed that copolymers were able to reduce the autogenous shrinkage in the paste due primarily to a reduction in pore solution surface tension. TGA showed a slight increase in the hydration degree of the paste modified with the copolymers. The compressive strength was reduced in the pastes modified with the copolymers that showed an increased volume of air voids. The addition of copolymers did not affect the electrical resistivity of the pastes except in the case where there was a large volume of air voids, which acted as electrical insulators.
Effect of Poly(ethylene glycol)–Poly(propylene glycol) Triblock Copolymers on Autogenous Shrinkage and Properties of Cement Pastes
This study investigates the hydration, microstructure, autogenous shrinkage, electrical resistivity, and mechanical properties of Portland cement pastes modified with PEG-PPG triblock copolymers with varied molecular weights. The early age properties including setting time and hydration heat were examined using the Vicat test and isothermal calorimetry. The hydration products and pore size distribution were analyzed using thermogravimetric analysis (TGA) and nitrogen adsorption, respectively. Mechanical properties and electrical resistivity were evaluated using the compressive strength test and electrochemical impedance spectroscopy (EIS). It was shown that the addition of the copolymers reduced the surface tension of the cement paste pore solution due to the presence of a hydrophobic block (PPG) in the molecular structure of the copolymers. The setting time and hydration heat were relatively similar in the control paste as well as the pastes modified with the copolymers. The results showed that copolymers were able to reduce the autogenous shrinkage in the paste due primarily to a reduction in pore solution surface tension. TGA showed a slight increase in the hydration degree of the paste modified with the copolymers. The compressive strength was reduced in the pastes modified with the copolymers that showed an increased volume of air voids. The addition of copolymers did not affect the electrical resistivity of the pastes except in the case where there was a large volume of air voids, which acted as electrical insulators.
Effect of Poly(ethylene glycol)–Poly(propylene glycol) Triblock Copolymers on Autogenous Shrinkage and Properties of Cement Pastes
Mohammad Sadegh Tale Masoule (Autor:in) / Ali Ghahremaninezhad (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2006
|Autogenous Shrinkage of Various Cement Pastes
British Library Conference Proceedings | 1993
|Chemical shrinkage and autogenous shrinkage of Portland cement metakaolin pastes
Online Contents | 1998
|