Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Three-Dimensional Point Cloud Denoising for Tunnel Data by Combining Intensity and Geometry Information
At present, three-dimensional laser scanners are used to scan subway shield tunnels and generate point cloud data as the basis for extracting a variety of information about tunnel defects. However, there are obstacles in the tunnel such as pipelines, tracks, and signaling systems that cause noise in the point cloud. Usually, the data of the tunnel point cloud are huge, and the efficiency of artificial denoising is low. Faced with this problem, based on the respective characteristics of the geometric shape and reflection intensity of the tunnel point cloud and their correlation, this paper proposes a tunnel point cloud denoising method. The method includes the following three parts: reflection intensity threshold denoising, joint shape and reflection intensity denoising, and shape denoising. Through the experiment on the single-ring segment point cloud of a shield tunnel, the method proposed in this paper takes 2 min to remove 99.77% of the noise in the point cloud. Compared with manual denoising, the method proposed in this paper takes two fifteenths of the time to achieve the same denoising effect. The method proposed in this paper meets the requirements of a tunnel point cloud data survey. Thus, it provides support for the efficient, accurate, and automatic daily maintenance and surveys of tunnels.
Three-Dimensional Point Cloud Denoising for Tunnel Data by Combining Intensity and Geometry Information
At present, three-dimensional laser scanners are used to scan subway shield tunnels and generate point cloud data as the basis for extracting a variety of information about tunnel defects. However, there are obstacles in the tunnel such as pipelines, tracks, and signaling systems that cause noise in the point cloud. Usually, the data of the tunnel point cloud are huge, and the efficiency of artificial denoising is low. Faced with this problem, based on the respective characteristics of the geometric shape and reflection intensity of the tunnel point cloud and their correlation, this paper proposes a tunnel point cloud denoising method. The method includes the following three parts: reflection intensity threshold denoising, joint shape and reflection intensity denoising, and shape denoising. Through the experiment on the single-ring segment point cloud of a shield tunnel, the method proposed in this paper takes 2 min to remove 99.77% of the noise in the point cloud. Compared with manual denoising, the method proposed in this paper takes two fifteenths of the time to achieve the same denoising effect. The method proposed in this paper meets the requirements of a tunnel point cloud data survey. Thus, it provides support for the efficient, accurate, and automatic daily maintenance and surveys of tunnels.
Three-Dimensional Point Cloud Denoising for Tunnel Data by Combining Intensity and Geometry Information
Yan Bao (Autor:in) / Yucheng Wen (Autor:in) / Chao Tang (Autor:in) / Zhe Sun (Autor:in) / Xiaolin Meng (Autor:in) / Dongliang Zhang (Autor:in) / Li Wang (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Denoising and smoothing based on 3-D body scan line point cloud data
British Library Online Contents | 2010
|Robust Segmentation for Large Volumes of Laser Scanning Three-Dimensional Point Cloud Data
Online Contents | 2016
|