Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Impacts of Artificial Regulation on Karst Spring Hydrograph in Northern China: Laboratory Study and Numerical Simulations
Karst aquifers produce the world’s largest springs and supply the water resources to about a quarter of the global population while being influenced by high-intensity human activities. Knowledge about spring discharge hydrographs driven by the effects of artificial regulation is essential to develop practical strategies for the management of karst groundwater. Based on hydrogeological conditions of the karst aquifer in Jinan, a two-dimensional laboratory tank was constructed, and a corresponding numerical simulation model was developed to explore how artificial regulation drives spring hydrographs in northern China. The results showed that the spring hydrographs were significantly changed under the effects of artificial regulation. The recession coefficient increased with pumping and decreased with increasing injection rates. The late sub-recession of spring discharge did not obey the exponential recession under the influence of injection. Pumping and injection in conduit zones showed more obvious effects on the recession coefficient in the late sub-recession curves. Groundwater exchange between conduits and fissure zones differed totally for different artificial regulation modes. With continuing rainfall, the flow fields were gradually controlled by rainfall. There was a time lag in the flow fields caused by rainfall. Under the stress of exploitation at different positions, stagnation points appeared at different locations in fissure zones, and locations of stagnation points were highly dependent on the positions of pumping wells. These findings are essential for better management of karst groundwater and karst spring protection.
Impacts of Artificial Regulation on Karst Spring Hydrograph in Northern China: Laboratory Study and Numerical Simulations
Karst aquifers produce the world’s largest springs and supply the water resources to about a quarter of the global population while being influenced by high-intensity human activities. Knowledge about spring discharge hydrographs driven by the effects of artificial regulation is essential to develop practical strategies for the management of karst groundwater. Based on hydrogeological conditions of the karst aquifer in Jinan, a two-dimensional laboratory tank was constructed, and a corresponding numerical simulation model was developed to explore how artificial regulation drives spring hydrographs in northern China. The results showed that the spring hydrographs were significantly changed under the effects of artificial regulation. The recession coefficient increased with pumping and decreased with increasing injection rates. The late sub-recession of spring discharge did not obey the exponential recession under the influence of injection. Pumping and injection in conduit zones showed more obvious effects on the recession coefficient in the late sub-recession curves. Groundwater exchange between conduits and fissure zones differed totally for different artificial regulation modes. With continuing rainfall, the flow fields were gradually controlled by rainfall. There was a time lag in the flow fields caused by rainfall. Under the stress of exploitation at different positions, stagnation points appeared at different locations in fissure zones, and locations of stagnation points were highly dependent on the positions of pumping wells. These findings are essential for better management of karst groundwater and karst spring protection.
Impacts of Artificial Regulation on Karst Spring Hydrograph in Northern China: Laboratory Study and Numerical Simulations
Peipeng Wu (Autor:in) / Longcang Shu (Autor:in) / Fulin Li (Autor:in) / Huawei Chen (Autor:in) / Yang Xu (Autor:in) / Zhike Zou (Autor:in) / Esther Chifuniro Mabedi (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Hydraulic-hydrology synthesis of Golubinka karst spring discharge hydrograph
DOAJ | 2018
|DOAJ | 2020
|DOAJ | 2023
|