Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Studying Unimodal, Bimodal, PDI and Bimodal-PDI Variants of Multiple Soil Water Retention Models: II. Evaluation of Parametric Pedotransfer Functions Against Direct Fits
A high-resolution soil water retention data set (81 repacked soil samples with 7729 observations) measured by the HYPROP system was used to develop and evaluate the performance of regression parametric pedotransfer functions (PTFs). A total of sixteen soil hydraulic models were evaluated including five unimodal water retention expressions of Brooks and Corey (BC model), Fredlund and Xing (FX model), Kosugi (K model), van Genuchten with four free parameters (VG model) and van Genuchten with five free parameters (VGm model). In addition, eleven bimodal, Peters−Durner−Iden (PDI) and bimodal-PDI variants of the original expressions were studied. Six modeling scenarios (S1 to S6) were examined with different combinations of the following input predictors: soil texture (percentages of sand, silt and clay), soil bulk density, organic matter content, percent of stable aggregates and saturated water content (θs). Although a majority of the model parameters showed low correlations with basic soil properties, most of the parametric PTFs provided reasonable water content estimations. The VGm parametric PTF with an RMSE of 0.034 cm3 cm−3 was the best PTF when all input predictors were considered. When averaged across modeling scenarios, the PDI variant of the K model with an RMSE of 0.045 cm3 cm−3 showed the highest performance. The best performance of all models occurred at S6 when θs was considered as an additional input predictor. The second-best performance for 11 out of the 16 models belonged to S1 with soil textural components as the only inputs. Our results do not recommend the development of parametric PTFs using bimodal variants because of their poor performance, which is attributed to their high number of free parameters.
Studying Unimodal, Bimodal, PDI and Bimodal-PDI Variants of Multiple Soil Water Retention Models: II. Evaluation of Parametric Pedotransfer Functions Against Direct Fits
A high-resolution soil water retention data set (81 repacked soil samples with 7729 observations) measured by the HYPROP system was used to develop and evaluate the performance of regression parametric pedotransfer functions (PTFs). A total of sixteen soil hydraulic models were evaluated including five unimodal water retention expressions of Brooks and Corey (BC model), Fredlund and Xing (FX model), Kosugi (K model), van Genuchten with four free parameters (VG model) and van Genuchten with five free parameters (VGm model). In addition, eleven bimodal, Peters−Durner−Iden (PDI) and bimodal-PDI variants of the original expressions were studied. Six modeling scenarios (S1 to S6) were examined with different combinations of the following input predictors: soil texture (percentages of sand, silt and clay), soil bulk density, organic matter content, percent of stable aggregates and saturated water content (θs). Although a majority of the model parameters showed low correlations with basic soil properties, most of the parametric PTFs provided reasonable water content estimations. The VGm parametric PTF with an RMSE of 0.034 cm3 cm−3 was the best PTF when all input predictors were considered. When averaged across modeling scenarios, the PDI variant of the K model with an RMSE of 0.045 cm3 cm−3 showed the highest performance. The best performance of all models occurred at S6 when θs was considered as an additional input predictor. The second-best performance for 11 out of the 16 models belonged to S1 with soil textural components as the only inputs. Our results do not recommend the development of parametric PTFs using bimodal variants because of their poor performance, which is attributed to their high number of free parameters.
Studying Unimodal, Bimodal, PDI and Bimodal-PDI Variants of Multiple Soil Water Retention Models: II. Evaluation of Parametric Pedotransfer Functions Against Direct Fits
Amir Haghverdi (Autor:in) / Hasan Sabri Öztürk (Autor:in) / Wolfgang Durner (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Equation for unimodal and bimodal soil-water characteristic curves
British Library Online Contents | 2016
|Equation for unimodal and bimodal soil–water characteristic curves
British Library Online Contents | 2016
|Unimodal and Bimodal Optimization of Compression Helical Springs Against Instability
British Library Conference Proceedings | 1995
|Entrainment characteristics of nonuniform unimodal and bimodal sediments
Springer Verlag | 2009
|