Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
A Fully Connected Neural Network (FCNN) Model to Simulate Karst Spring Flowrates in the Umbria Region (Central Italy)
In the last decades, climate change has led to increasingly frequent drought events within the Mediterranean area, creating an urgent need of a more sustainable management of groundwater resources exploited for drinking and agricultural purposes. One of the most challenging issues is to provide reliable simulations and forecasts of karst spring discharges, whose reduced information, as well as the hydrological processes involving their feeding aquifers, is often a big issue for water service managers and researchers. In order to plan a sustainable water resource exploitation that could face future shortages, the groundwater availability should be assessed by continuously monitoring spring discharge during the hydrological year, using collected data to better understand the past behaviour and, possibly, forecast the future one in case of severe droughts. The aim of this paper is to understand the factors that govern different spring discharge patterns according to rainfall inputs and to present a model, based on artificial neural network (ANN) data training and cross-correlation analyses, to evaluate the discharge of some karst spring in the Umbria region (Central Italy). The model used is a fully connected neural network (FCNN) and has been used both for filling gaps in the spring discharge time series and for simulating the response of six springs to rainfall seasonal patterns from a 20-year continuous daily record, collected and provided by the Regional Environmental Protection Agency (ARPA) of the Umbria region.
A Fully Connected Neural Network (FCNN) Model to Simulate Karst Spring Flowrates in the Umbria Region (Central Italy)
In the last decades, climate change has led to increasingly frequent drought events within the Mediterranean area, creating an urgent need of a more sustainable management of groundwater resources exploited for drinking and agricultural purposes. One of the most challenging issues is to provide reliable simulations and forecasts of karst spring discharges, whose reduced information, as well as the hydrological processes involving their feeding aquifers, is often a big issue for water service managers and researchers. In order to plan a sustainable water resource exploitation that could face future shortages, the groundwater availability should be assessed by continuously monitoring spring discharge during the hydrological year, using collected data to better understand the past behaviour and, possibly, forecast the future one in case of severe droughts. The aim of this paper is to understand the factors that govern different spring discharge patterns according to rainfall inputs and to present a model, based on artificial neural network (ANN) data training and cross-correlation analyses, to evaluate the discharge of some karst spring in the Umbria region (Central Italy). The model used is a fully connected neural network (FCNN) and has been used both for filling gaps in the spring discharge time series and for simulating the response of six springs to rainfall seasonal patterns from a 20-year continuous daily record, collected and provided by the Regional Environmental Protection Agency (ARPA) of the Umbria region.
A Fully Connected Neural Network (FCNN) Model to Simulate Karst Spring Flowrates in the Umbria Region (Central Italy)
Francesco Maria De Filippi (Autor:in) / Matteo Ginesi (Autor:in) / Giuseppe Sappa (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Intelligent Location of Microseismic Events Based on a Fully Convolutional Neural Network (FCNN)
Online Contents | 2022
|The landslide in Valerchia near Gubbio, Umbria, Central Italy
British Library Conference Proceedings | 1998
|Debris flow phenomena in the Umbria Marche Apennines (Central Italy)
British Library Conference Proceedings | 1992
|British Library Online Contents | 2006
|