Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Carbon Emission Measurement of Urban Green Passenger Transport: A Case Study of Qingdao
Urban passenger transport is one of the most significant sources of fossil energy consumption and greenhouse gas emission, especially in developing countries. The rapid growth of urban transport makes it a critical target for carbon reduction. This paper establishes a method for calculating carbon emission from urban passenger transport including ground buses, private cars, cruising taxis, online-hailing taxis, and rail transit. The scope of the study is determined according to the transportation mode and energy type, and the carbon emission factor of each energy source is also determined according to the local energy structure, etc. Taking into consideration the development trend of new energy vehicles, a combination of “top-down” and “bottom-up” approaches is used to estimate the carbon dioxide emission of each transportation mode. The results reveal that carbon emission from Qingdao’s passenger transport in 2020 was 8.15 million tons, of which 84.31% came from private cars, while the share of private cars of total travel was only 45.66%. Ground buses are the most efficient mode of transport. Fossil fuels emit more greenhouse gases than other clean energy sources. The emission intensity of hydrogen fuel cell buses is better than that of other fuel type vehicles. Battery electric buses have the largest sensitivity coefficient, therefore the carbon emission reduction potentially achieved by developing battery electric buses is most significant.
Carbon Emission Measurement of Urban Green Passenger Transport: A Case Study of Qingdao
Urban passenger transport is one of the most significant sources of fossil energy consumption and greenhouse gas emission, especially in developing countries. The rapid growth of urban transport makes it a critical target for carbon reduction. This paper establishes a method for calculating carbon emission from urban passenger transport including ground buses, private cars, cruising taxis, online-hailing taxis, and rail transit. The scope of the study is determined according to the transportation mode and energy type, and the carbon emission factor of each energy source is also determined according to the local energy structure, etc. Taking into consideration the development trend of new energy vehicles, a combination of “top-down” and “bottom-up” approaches is used to estimate the carbon dioxide emission of each transportation mode. The results reveal that carbon emission from Qingdao’s passenger transport in 2020 was 8.15 million tons, of which 84.31% came from private cars, while the share of private cars of total travel was only 45.66%. Ground buses are the most efficient mode of transport. Fossil fuels emit more greenhouse gases than other clean energy sources. The emission intensity of hydrogen fuel cell buses is better than that of other fuel type vehicles. Battery electric buses have the largest sensitivity coefficient, therefore the carbon emission reduction potentially achieved by developing battery electric buses is most significant.
Carbon Emission Measurement of Urban Green Passenger Transport: A Case Study of Qingdao
Xinguang Li (Autor:in) / Tong Lv (Autor:in) / Jun Zhan (Autor:in) / Shen Wang (Autor:in) / Fuquan Pan (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Online Contents | 2013
|Elsevier | 2012
|Qingdao: Qingdao Harbor Vocational Technology College
British Library Online Contents | 2004
BASE | 2022
|Urban Underground Space Developing-Utilization in Qingdao
Springer Verlag | 2024
|