Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Understanding Climate Change and Heavy Metals in Coastal Areas: A Macroanalysis Assessment
Increasing human-induced climate issues, such as water pollution, have triggered rapid physiochemical changes, especially in coastal regions. These changes have directly impacted aquatic animals that live near coastal areas, such as bivalves and crustaceans (e.g., clams, crabs), as well as those that live in the lower areas of the habitat (i.e., sediment). Heavy metal pollution (e.g., mercury) is one of the most concerning physiochemical changes in these areas. The effects of heavy metals on coastal environments and organisms can be substantial, in spite of restoration efforts. Thus, more studies are needed to analyze the current situation of the impacts of climate-change-related issues on heavy metal concentrations in coastal areas. In this paper, we provide a scientometrics analysis of the interactions between climate change and heavy metal concentrations in coastal regions around the world. Scientometrics is the quantitative analysis of the available literature, with a focus on research patterns, using continuous and systematic methods. Our results showed that there was a total of 7922 related studies from 1979 to 2021. Heavy metal contamination, ecological quality status and ocean acidification are among the most influential keywords in this field. We concluded that among climate change issues, heavy metals are becoming a popular topic within research associated with climate change.
Understanding Climate Change and Heavy Metals in Coastal Areas: A Macroanalysis Assessment
Increasing human-induced climate issues, such as water pollution, have triggered rapid physiochemical changes, especially in coastal regions. These changes have directly impacted aquatic animals that live near coastal areas, such as bivalves and crustaceans (e.g., clams, crabs), as well as those that live in the lower areas of the habitat (i.e., sediment). Heavy metal pollution (e.g., mercury) is one of the most concerning physiochemical changes in these areas. The effects of heavy metals on coastal environments and organisms can be substantial, in spite of restoration efforts. Thus, more studies are needed to analyze the current situation of the impacts of climate-change-related issues on heavy metal concentrations in coastal areas. In this paper, we provide a scientometrics analysis of the interactions between climate change and heavy metal concentrations in coastal regions around the world. Scientometrics is the quantitative analysis of the available literature, with a focus on research patterns, using continuous and systematic methods. Our results showed that there was a total of 7922 related studies from 1979 to 2021. Heavy metal contamination, ecological quality status and ocean acidification are among the most influential keywords in this field. We concluded that among climate change issues, heavy metals are becoming a popular topic within research associated with climate change.
Understanding Climate Change and Heavy Metals in Coastal Areas: A Macroanalysis Assessment
Wen Jye Mok (Autor:in) / Mazlan Abd Ghaffar (Autor:in) / Mohd Iqbal Mohd Noor (Autor:in) / Fathurrahman Lananan (Autor:in) / Mohamad Nor Azra (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Challenges of managing coastal areas through climate change
Online Contents | 2011
|Understanding climate change and Livelihoods in coastal Bangladesh
HENRY – Bundesanstalt für Wasserbau (BAW) | 2013
|