Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
An Improved Differential Evolution for Parameter Identification of Photovoltaic Models
Photovoltaic (PV) systems are crucial for converting solar energy into electricity. Optimization, control, and simulation for PV systems are important for effectively harnessing solar energy. The exactitude of associated model parameters is an important influencing factor in the performance of PV systems. However, PV model parameter extraction is challenging due to parameter variability resulting from the change in different environmental conditions and equipment factors. Existing parameter identification approaches usually struggle to calculate precise solutions. For this reason, this paper presents an improved differential evolution algorithm, which integrates a collaboration mechanism of dual mutation strategies and an orientation guidance mechanism, called DODE. This collaboration mechanism adaptively assigns mutation strategies to different individuals at different stages to balance exploration and exploitation capabilities. Moreover, an orientation guidance mechanism is proposed to use the information of the movement direction of the population centroid to guide the evolution of elite individuals, preventing them from being trapped in local optima and guiding the population towards a local search. To assess the effectiveness of DODE, comparison experiments were conducted on six different PV models, i.e., the single, double, and triple diode models, and three other commercial PV modules, against ten other excellent meta-heuristic algorithms. For these models, the proposed DODE outperformed other algorithms, with the separate optimal root mean square error values of 9.86021877891317 × 10−4, 9.82484851784979 × 10−4, 9.82484851784993 × 10−4, 2.42507486809489 × 10−3, 1.72981370994064 × 10−3, and 1.66006031250846 × 10−2. Additionally, results obtained from statistical analysis confirm the remarkable competitive superiorities of DODE on convergence rate, stability, and reliability compared with other methods for PV model parameter identification.
An Improved Differential Evolution for Parameter Identification of Photovoltaic Models
Photovoltaic (PV) systems are crucial for converting solar energy into electricity. Optimization, control, and simulation for PV systems are important for effectively harnessing solar energy. The exactitude of associated model parameters is an important influencing factor in the performance of PV systems. However, PV model parameter extraction is challenging due to parameter variability resulting from the change in different environmental conditions and equipment factors. Existing parameter identification approaches usually struggle to calculate precise solutions. For this reason, this paper presents an improved differential evolution algorithm, which integrates a collaboration mechanism of dual mutation strategies and an orientation guidance mechanism, called DODE. This collaboration mechanism adaptively assigns mutation strategies to different individuals at different stages to balance exploration and exploitation capabilities. Moreover, an orientation guidance mechanism is proposed to use the information of the movement direction of the population centroid to guide the evolution of elite individuals, preventing them from being trapped in local optima and guiding the population towards a local search. To assess the effectiveness of DODE, comparison experiments were conducted on six different PV models, i.e., the single, double, and triple diode models, and three other commercial PV modules, against ten other excellent meta-heuristic algorithms. For these models, the proposed DODE outperformed other algorithms, with the separate optimal root mean square error values of 9.86021877891317 × 10−4, 9.82484851784979 × 10−4, 9.82484851784993 × 10−4, 2.42507486809489 × 10−3, 1.72981370994064 × 10−3, and 1.66006031250846 × 10−2. Additionally, results obtained from statistical analysis confirm the remarkable competitive superiorities of DODE on convergence rate, stability, and reliability compared with other methods for PV model parameter identification.
An Improved Differential Evolution for Parameter Identification of Photovoltaic Models
Shufu Yuan (Autor:in) / Yuzhang Ji (Autor:in) / Yongxu Chen (Autor:in) / Xin Liu (Autor:in) / Weijun Zhang (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Solar Photovoltaic Cell Parameter Identification Based on Improved Honey Badger Algorithm
DOAJ | 2022
|British Library Online Contents | 2018
|Mixed Unscented Kalman Filter and Differential Evolution for Parameter Identification
British Library Conference Proceedings | 2012
|Coupling Response Surface and Differential Evolution for Parameter Identification Problems
Online Contents | 2015
|