Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Run Theory and Copula-Based Drought Risk Analysis for Songnen Grassland in Northeastern China
Droughts are among the more costly natural hazards, and drought risk analysis has become urgent for the proper planning and management of water resources in grassland ecosystems. We chose Songnen grassland as a case study, used a standardized precipitation evapotranspiration index (SPEI) to model drought characteristics, employed run theory to define the drought event, and chose copula functions to construct the joint distribution for drought variables. We applied two kinds of return periods to conduct a drought risk assessment. After evaluating and comparing several distribution functions, drought severity (DS) was best described by the generalized extreme value (GEV) distribution, whereas drought duration (DD) was best fitted by gamma distribution. The root mean square error (RMSE) and Akaike Information Criterion (AIC) goodness-of-fit measures to evaluate their performance, the best-performing copula is Frank copula to model the joint dependence structure for each drought variables. The results of the secondary return periods indicate that a higher risk of droughts occurs in Keshan county, Longjiang county, Qiqiha’er city, Taonan city, and Baicheng city. Furthermore, a relatively lower risk of drought was found in Bei’an city, Mingquan county, Qinggang county, and qian’an county, and also in the Changling county and Shuangliao city. According to the calculation of the secondary return periods, which considered all possible scenarios in our study, we found that the secondary return period may be the best indicator for evaluating grassland ecosystem drought risk management.
Run Theory and Copula-Based Drought Risk Analysis for Songnen Grassland in Northeastern China
Droughts are among the more costly natural hazards, and drought risk analysis has become urgent for the proper planning and management of water resources in grassland ecosystems. We chose Songnen grassland as a case study, used a standardized precipitation evapotranspiration index (SPEI) to model drought characteristics, employed run theory to define the drought event, and chose copula functions to construct the joint distribution for drought variables. We applied two kinds of return periods to conduct a drought risk assessment. After evaluating and comparing several distribution functions, drought severity (DS) was best described by the generalized extreme value (GEV) distribution, whereas drought duration (DD) was best fitted by gamma distribution. The root mean square error (RMSE) and Akaike Information Criterion (AIC) goodness-of-fit measures to evaluate their performance, the best-performing copula is Frank copula to model the joint dependence structure for each drought variables. The results of the secondary return periods indicate that a higher risk of droughts occurs in Keshan county, Longjiang county, Qiqiha’er city, Taonan city, and Baicheng city. Furthermore, a relatively lower risk of drought was found in Bei’an city, Mingquan county, Qinggang county, and qian’an county, and also in the Changling county and Shuangliao city. According to the calculation of the secondary return periods, which considered all possible scenarios in our study, we found that the secondary return period may be the best indicator for evaluating grassland ecosystem drought risk management.
Run Theory and Copula-Based Drought Risk Analysis for Songnen Grassland in Northeastern China
Rina Wu (Autor:in) / Jiquan Zhang (Autor:in) / Yuhai Bao (Autor:in) / Enliang Guo (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2022
|Spatial-Temporal Characteristics of Spring Maize Drought in Songnen Plain, Northeast China
DOAJ | 2023
|Analysis of Drought Characteristics Using Copula Theory
British Library Conference Proceedings | 2012
|DOAJ | 2021
|