Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Evaluation of Physical and Economic Water-Saving Efficiency for Virtual Water Flows Related to Inter-Regional Crop Trade in China
If products were traded from regions with relatively high water productivity to regions with relatively low water productivity, water saving could be achieved. In this study, two indices—physical water-saving efficiency (volume of water savings per cubic meter of virtual water flows) and economic water-saving efficiency (value of water savings per cubic meter of virtual water flows considering water right trading)—were proposed to analyze the efficiency of inter-regional virtual water flows related to crop trade in China. Results indicated that the volume of inter-regional virtual water flows was 1.61 × 109 m3, more than 90% of which was occupied by oil-bearing crops, cereals, and beans. In terms of physical efficiency, only cereals and vegetables presented negative values. All kinds of crop trades were economically efficient, while most crops’ economic water-saving efficiency was less than 10 × 103 Yuan/m3. The application of advanced water-saving technologies, the cultivation of new crop varieties, the adjustment of regional cropping patterns, or consumption and trade patterns, could contribute to more water savings and higher physical water-saving efficiency, while the possible social, economic, and environmental tradeoffs should be considered simultaneously. Water right trading and virtual water compensation could contribute to sustainable water consumption, and full-cost pricing should be adapted in the future.
Evaluation of Physical and Economic Water-Saving Efficiency for Virtual Water Flows Related to Inter-Regional Crop Trade in China
If products were traded from regions with relatively high water productivity to regions with relatively low water productivity, water saving could be achieved. In this study, two indices—physical water-saving efficiency (volume of water savings per cubic meter of virtual water flows) and economic water-saving efficiency (value of water savings per cubic meter of virtual water flows considering water right trading)—were proposed to analyze the efficiency of inter-regional virtual water flows related to crop trade in China. Results indicated that the volume of inter-regional virtual water flows was 1.61 × 109 m3, more than 90% of which was occupied by oil-bearing crops, cereals, and beans. In terms of physical efficiency, only cereals and vegetables presented negative values. All kinds of crop trades were economically efficient, while most crops’ economic water-saving efficiency was less than 10 × 103 Yuan/m3. The application of advanced water-saving technologies, the cultivation of new crop varieties, the adjustment of regional cropping patterns, or consumption and trade patterns, could contribute to more water savings and higher physical water-saving efficiency, while the possible social, economic, and environmental tradeoffs should be considered simultaneously. Water right trading and virtual water compensation could contribute to sustainable water consumption, and full-cost pricing should be adapted in the future.
Evaluation of Physical and Economic Water-Saving Efficiency for Virtual Water Flows Related to Inter-Regional Crop Trade in China
Jing Liu (Autor:in) / Yu Zhang (Autor:in) / Zhongbo Yu (Autor:in)
2018
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Measuring scarce water saving from interregional virtual water flows in China
DOAJ | 2018
|Inter-Regional Coordination to Improve Equality in the Agricultural Virtual Water Trade
DOAJ | 2018
|Changing Patterns of Global Agri-Food Trade and the Economic Efficiency of Virtual Water Flows
DOAJ | 2015
|