Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
An innovative continuous flow BNR-IC process for nutrients removal and phosphorus recovery from synthetic and real domestic wastewater
An innovative continuous flow process linking biological nutrients removal (BNR) with induced crystallization (IC) was used to remove nutrients and recover phosphorus (P) from synthetic and real domestic wastewater. The results showed that a good nutrients removal performance was found regardless of feeding solutions. P recovery efficiency from synthetic wastewater was 70.2% slightly less than that from real domestic sewage (74.2%). Importantly, P recovery can effectively enhance the subsequent biological P removal. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis displayed an obvious shift in microbial community structure when switching feeding synthetic solution to real wastewater. A total of 13 bands were detected in sludge samples using synthetic and real domestic sewage, affiliated with 8 phyla or classes domain Bacteria (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Flavobacteria, Actinobacteria, Sphingobacteria, Epsilonproteobacteria and Chlorobia). The results obtained here suggest that the continuous flow BNR-IC process is feasible for nutrients removal and P recovery from domestic sewage and is a promising technology for wastewater treatment combined with recycling of P elements.
An innovative continuous flow BNR-IC process for nutrients removal and phosphorus recovery from synthetic and real domestic wastewater
An innovative continuous flow process linking biological nutrients removal (BNR) with induced crystallization (IC) was used to remove nutrients and recover phosphorus (P) from synthetic and real domestic wastewater. The results showed that a good nutrients removal performance was found regardless of feeding solutions. P recovery efficiency from synthetic wastewater was 70.2% slightly less than that from real domestic sewage (74.2%). Importantly, P recovery can effectively enhance the subsequent biological P removal. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis displayed an obvious shift in microbial community structure when switching feeding synthetic solution to real wastewater. A total of 13 bands were detected in sludge samples using synthetic and real domestic sewage, affiliated with 8 phyla or classes domain Bacteria (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Flavobacteria, Actinobacteria, Sphingobacteria, Epsilonproteobacteria and Chlorobia). The results obtained here suggest that the continuous flow BNR-IC process is feasible for nutrients removal and P recovery from domestic sewage and is a promising technology for wastewater treatment combined with recycling of P elements.
An innovative continuous flow BNR-IC process for nutrients removal and phosphorus recovery from synthetic and real domestic wastewater
Haiming Zou (Autor:in) / Xiwu Lu (Autor:in)
2016
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Nitrogen and Phosphorus Removal in Synthetic Domestic Wastewater Using SBBR Technology
British Library Conference Proceedings | 2012
|Phosphorus removal from domestic wastewater by Echinodorus cordifolius L.
Online Contents | 2012
|Phosphorus removal from domestic wastewater by Echinodorus cordifolius L.
Taylor & Francis Verlag | 2012
|