Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Prevention and Detection of Electricity Theft of Distribution Network
Electricity theft is a costly problem. This paper will be focused on Pakistan and the problem of electricity theft. We will discuss its impacts and how best to fix them through the use of technology. For this purpose, we developed a smart meter, focusing on grid modernization through economic smart meter development. This paper focuses on a study carried out with the help of PESCO. It is one of the most inefficient distribution providers. The study has evaluated commercial, industrial, rural, and urban areas, covering a total area of 15 km2. The area includes several power sinks. Previous research has been used to compare the results of this case study; this included studies of other Third World countries, such as Pakistan and South Africa. The design of, clever, innovative, intelligent meters used in this study was better than the basic digital meters and had many features compatible with the E.U., and U.S.A.’s western power market and energy infrastructure. The study also discusses the potential use of neural network-trained models and IoT (internet of things) integration with cloud computing. This can provide an alternate means of data analysis, accurate prediction, and greater user accessibility. The case study is the first ever done using smart meters on such a large scale, and the compiled data has provided insight into energy consumers and their usage. The statistics can be used to isolate the most probable cause of theft and the area or location of occurrence.
Prevention and Detection of Electricity Theft of Distribution Network
Electricity theft is a costly problem. This paper will be focused on Pakistan and the problem of electricity theft. We will discuss its impacts and how best to fix them through the use of technology. For this purpose, we developed a smart meter, focusing on grid modernization through economic smart meter development. This paper focuses on a study carried out with the help of PESCO. It is one of the most inefficient distribution providers. The study has evaluated commercial, industrial, rural, and urban areas, covering a total area of 15 km2. The area includes several power sinks. Previous research has been used to compare the results of this case study; this included studies of other Third World countries, such as Pakistan and South Africa. The design of, clever, innovative, intelligent meters used in this study was better than the basic digital meters and had many features compatible with the E.U., and U.S.A.’s western power market and energy infrastructure. The study also discusses the potential use of neural network-trained models and IoT (internet of things) integration with cloud computing. This can provide an alternate means of data analysis, accurate prediction, and greater user accessibility. The case study is the first ever done using smart meters on such a large scale, and the compiled data has provided insight into energy consumers and their usage. The statistics can be used to isolate the most probable cause of theft and the area or location of occurrence.
Prevention and Detection of Electricity Theft of Distribution Network
Sajad Ali (Autor:in) / Min Yongzhi (Autor:in) / Wajid Ali (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Online electricity theft detection and prevention scheme for smart cities
Wiley | 2020
|Online electricity theft detection and prevention scheme for smart cities
IET | 2020
|A Convolution–Non-Convolution Parallel Deep Network for Electricity Theft Detection
DOAJ | 2023
|Online Contents | 2008