Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Modeling the minimum enzymatic requirements for optimal cellulose conversion
Hydrolysis of cellulose is achieved by the synergistic action of endoglucanases, exoglucanases and β-glucosidases. Most cellulolytic microorganisms produce a varied array of these enzymes and the relative roles of the components are not easily defined or quantified. In this study we have used partially purified cellulases produced heterologously in the yeast Saccharomyces cerevisiae to increase our understanding of the roles of some of these components. CBH1 (Cel7), CBH2 (Cel6) and EG2 (Cel5) were separately produced in recombinant yeast strains, allowing their isolation free of any contaminating cellulolytic activity. Binary and ternary mixtures of the enzymes at loadings ranging between 3 and 100 mg g ^−1 Avicel allowed us to illustrate the relative roles of the enzymes and their levels of synergy. A mathematical model was created to simulate the interactions of these enzymes on crystalline cellulose, under both isolated and synergistic conditions. Laboratory results from the various mixtures at a range of loadings of recombinant enzymes allowed refinement of the mathematical model. The model can further be used to predict the optimal synergistic mixes of the enzymes. This information can subsequently be applied to help to determine the minimum protein requirement for complete hydrolysis of cellulose. Such knowledge will be greatly informative for the design of better enzymatic cocktails or processing organisms for the conversion of cellulosic biomass to commodity products.
Modeling the minimum enzymatic requirements for optimal cellulose conversion
Hydrolysis of cellulose is achieved by the synergistic action of endoglucanases, exoglucanases and β-glucosidases. Most cellulolytic microorganisms produce a varied array of these enzymes and the relative roles of the components are not easily defined or quantified. In this study we have used partially purified cellulases produced heterologously in the yeast Saccharomyces cerevisiae to increase our understanding of the roles of some of these components. CBH1 (Cel7), CBH2 (Cel6) and EG2 (Cel5) were separately produced in recombinant yeast strains, allowing their isolation free of any contaminating cellulolytic activity. Binary and ternary mixtures of the enzymes at loadings ranging between 3 and 100 mg g ^−1 Avicel allowed us to illustrate the relative roles of the enzymes and their levels of synergy. A mathematical model was created to simulate the interactions of these enzymes on crystalline cellulose, under both isolated and synergistic conditions. Laboratory results from the various mixtures at a range of loadings of recombinant enzymes allowed refinement of the mathematical model. The model can further be used to predict the optimal synergistic mixes of the enzymes. This information can subsequently be applied to help to determine the minimum protein requirement for complete hydrolysis of cellulose. Such knowledge will be greatly informative for the design of better enzymatic cocktails or processing organisms for the conversion of cellulosic biomass to commodity products.
Modeling the minimum enzymatic requirements for optimal cellulose conversion
R den Haan (Autor:in) / J M van Zyl (Autor:in) / T M Harms (Autor:in) / W H van Zyl (Autor:in)
2013
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Modeling the minimum enzymatic requirements for optimal cellulose conversion
IOP Institute of Physics | 2013
|British Library Online Contents | 2004
Nearly Zero-Energy Buildings: Optimal Cost of Minimum Energy Requirements
British Library Conference Proceedings | 2015
|LRFD Minimum Flexural Reinforcement Requirements
NTIS | 2019
|Cost-optimal levels of minimum energy performance requirements in the Danish Building Regulations
BASE | 2018
|