Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
What drives historical and future changes in photovoltaic power production from the perspective of global warming?
We investigate the drivers of global and regional changes in the potential for photovoltaic (PV) power production from the pre-industrial (1850) to present-day (1985–2014) and until the end of the century (2071–2100), based on output from the Coupled Model Intercomparison Project phase six (CMIP6). Our assessment separates regional contributions from changes in clouds, humidity, temperature, aerosols, and wind speed to the changes in PV power potentials for the first time. Present-day PV power potentials are adversely affected by anthropogenic aerosols compared to the pre-industrial, with a global decrease of the PV power potential by −1.3%. Our results highlight a globally averaged decrease in future PV power potentials primarily driven by temperature and humidity increases by −1.2% to more than −3.5%, depending on the scenario. Regionally different contributions of changes in clouds and aerosols cause heterogeneous spatial patterns in changes of PV potentials, with typically stronger (weaker) influences from clouds (aerosols) in SSP5-8.5 compared to SSP1-2.6. Our results imply that the uncertain response of clouds to warming and aerosol effects are hurdles in quantifying changes in the regional potentials for PV power production.
What drives historical and future changes in photovoltaic power production from the perspective of global warming?
We investigate the drivers of global and regional changes in the potential for photovoltaic (PV) power production from the pre-industrial (1850) to present-day (1985–2014) and until the end of the century (2071–2100), based on output from the Coupled Model Intercomparison Project phase six (CMIP6). Our assessment separates regional contributions from changes in clouds, humidity, temperature, aerosols, and wind speed to the changes in PV power potentials for the first time. Present-day PV power potentials are adversely affected by anthropogenic aerosols compared to the pre-industrial, with a global decrease of the PV power potential by −1.3%. Our results highlight a globally averaged decrease in future PV power potentials primarily driven by temperature and humidity increases by −1.2% to more than −3.5%, depending on the scenario. Regionally different contributions of changes in clouds and aerosols cause heterogeneous spatial patterns in changes of PV potentials, with typically stronger (weaker) influences from clouds (aerosols) in SSP5-8.5 compared to SSP1-2.6. Our results imply that the uncertain response of clouds to warming and aerosol effects are hurdles in quantifying changes in the regional potentials for PV power production.
What drives historical and future changes in photovoltaic power production from the perspective of global warming?
Robert Constantin Scheele (Autor:in) / Stephanie Fiedler (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Future changes in global warming potentials under representative concentration pathways
IOP Institute of Physics | 2011
|Perspective has a strong effect on the calculation of historical contributions to global warming
DOAJ | 2017
|Global Warming Drives Expansion of Endangered Spruce Forest on the Tibetan Plateau
DOAJ | 2024
|