Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Damage Effect of Thermal Shock on the Heated Granite at Different Cooling Rates
This study investigates the affecting pattern of cooling rates on the physical and mechanical properties of granite at high temperature. The different cooling rates are realized by cooling the heated granite specimens in the air at room temperature, −60 °C, and −100 °C. Slow cooling in the unplugged furnace is also performed on an additional set of specimens as a reference group. Physical and mechanical tests are performed on the granite specimens after thermal shock treatments. The results indicate a decreasing trend of the dry density, P-wave velocity, strength, and fracture toughness, and an increasing trend of the porosity, as the heating level or the cooling rate ascends. The microscopic observation on the fracture surface of the tested specimens manifests the deteriorating effect of thermal shock with a higher cooling rate, where the transition from trans-granular and intra-granular fracturing to intergranular fracturing serves to explain the variation pattern of the properties obtained in the lab tests.
Damage Effect of Thermal Shock on the Heated Granite at Different Cooling Rates
This study investigates the affecting pattern of cooling rates on the physical and mechanical properties of granite at high temperature. The different cooling rates are realized by cooling the heated granite specimens in the air at room temperature, −60 °C, and −100 °C. Slow cooling in the unplugged furnace is also performed on an additional set of specimens as a reference group. Physical and mechanical tests are performed on the granite specimens after thermal shock treatments. The results indicate a decreasing trend of the dry density, P-wave velocity, strength, and fracture toughness, and an increasing trend of the porosity, as the heating level or the cooling rate ascends. The microscopic observation on the fracture surface of the tested specimens manifests the deteriorating effect of thermal shock with a higher cooling rate, where the transition from trans-granular and intra-granular fracturing to intergranular fracturing serves to explain the variation pattern of the properties obtained in the lab tests.
Damage Effect of Thermal Shock on the Heated Granite at Different Cooling Rates
Xiang Li (Autor:in) / Xiaodong Fan (Autor:in) / Ming Tao (Autor:in) / Tubing Yin (Autor:in) / Si Huang (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Spatial gradient distributions of thermal shock-induced damage to granite
DOAJ | 2020
|Effect of Mechanical Damage on the Thermal Conductivity of Granite
Online Contents | 2019
|