Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Nonlinear Simulation of Wave Train Impact on a Vertical Seawall
A 2D nonlinear numerical wave flume is developed to investigate the wave train impact on a vertical seawall. Fully nonlinear kinematic and dynamic boundary conditions are satisfied on the instantaneous free surface. Cases of single-, double- and multi-crest wave trains are discussed. For single-crest wave train cases, the present nonlinear results are compared with the solution of the Serre-Green-Naghdi (SGN) model, showing good agreement. For double-crest wave train cases, the SGN model underestimates the maximum wave run-up along the vertical seawall. Compared with the linear results, the nonlinearity for double-crest cases can lead to an evident increase of the wave run-up and high-frequency free-surface oscillations. Through a fast Fourier analysis, evident nonlinear characteristics of the time series of the wave run-up and wave load during the wave impact process are confirmed. For multi-crest wave train cases, irregular wave run-ups can be observed. In some cases, the wave run-up along the vertical seawall can reach about 6 times that of the incident wave, which should be considered carefully in a practical design.
Nonlinear Simulation of Wave Train Impact on a Vertical Seawall
A 2D nonlinear numerical wave flume is developed to investigate the wave train impact on a vertical seawall. Fully nonlinear kinematic and dynamic boundary conditions are satisfied on the instantaneous free surface. Cases of single-, double- and multi-crest wave trains are discussed. For single-crest wave train cases, the present nonlinear results are compared with the solution of the Serre-Green-Naghdi (SGN) model, showing good agreement. For double-crest wave train cases, the SGN model underestimates the maximum wave run-up along the vertical seawall. Compared with the linear results, the nonlinearity for double-crest cases can lead to an evident increase of the wave run-up and high-frequency free-surface oscillations. Through a fast Fourier analysis, evident nonlinear characteristics of the time series of the wave run-up and wave load during the wave impact process are confirmed. For multi-crest wave train cases, irregular wave run-ups can be observed. In some cases, the wave run-up along the vertical seawall can reach about 6 times that of the incident wave, which should be considered carefully in a practical design.
Nonlinear Simulation of Wave Train Impact on a Vertical Seawall
Dezhi Ning (Autor:in) / Xiang Li (Autor:in) / Chongwei Zhang (Autor:in)
2018
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Numerical Simulation of Wave-Seawall Interaction
British Library Conference Proceedings | 2003
|LAGRANGIAN PARTICLE METHOD FOR SIMULATION OF WAVE OVERTOPPING ON A VERTICAL SEAWALL
Online Contents | 2005
|