Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Structural Response of AISC- composite concrete filled circular steel Columns under Lateral Load
In this article, there is a theoretical behavior research of composite frames consist of American Institute of Steel Construction (AISC)-composite pipes-filled with concrete to act as circular steel columns joined with steel beams subjected to unchanged axial loads and a lateral increasing load. The effects of column height and skin thickness, based on those available in the AISC manual, on the load-deformation reaction of composite frames, including steel tubes filled with concrete STFC, loaded by maximum vertical load allowed by AISC manual, were studied. A ANSYS program was used to develop a finite element (FE) model. This simulation considers linear and non-linear response of the composite materials. The obtained outcomes from the FE analysis were presented and discussed. Over the range of column heights (from 3048 mm to 6096 mm), no buckling has been reached and failure modes were observed after formation of plastic hinges at the connection of beam-column. For skin thicknesses (from 14.76 mm to 5.92 mm), varied load-deformation responses have been obtained. Stiffer Responses were obtained for skin thickness 14.76 mm. Lateral load range at failure was from 9.2 to 20.8 % of the maximum AISC vertical load, and displacement ductility was ranged from 1.71 to 3.08 for circular-STFC frames.
Structural Response of AISC- composite concrete filled circular steel Columns under Lateral Load
In this article, there is a theoretical behavior research of composite frames consist of American Institute of Steel Construction (AISC)-composite pipes-filled with concrete to act as circular steel columns joined with steel beams subjected to unchanged axial loads and a lateral increasing load. The effects of column height and skin thickness, based on those available in the AISC manual, on the load-deformation reaction of composite frames, including steel tubes filled with concrete STFC, loaded by maximum vertical load allowed by AISC manual, were studied. A ANSYS program was used to develop a finite element (FE) model. This simulation considers linear and non-linear response of the composite materials. The obtained outcomes from the FE analysis were presented and discussed. Over the range of column heights (from 3048 mm to 6096 mm), no buckling has been reached and failure modes were observed after formation of plastic hinges at the connection of beam-column. For skin thicknesses (from 14.76 mm to 5.92 mm), varied load-deformation responses have been obtained. Stiffer Responses were obtained for skin thickness 14.76 mm. Lateral load range at failure was from 9.2 to 20.8 % of the maximum AISC vertical load, and displacement ductility was ranged from 1.71 to 3.08 for circular-STFC frames.
Structural Response of AISC- composite concrete filled circular steel Columns under Lateral Load
Sinan Yaseen (Autor:in) / Muhammed Ali Ihsan Saber (Autor:in) / Bayan Salim Al-Numan (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Structural Response of AISC- composite concrete filled circular steel Columns under Lateral Load
DOAJ | 2020
|Analysis of Concrete-Filled Steel Columns by the 2005 AISC Specification
British Library Conference Proceedings | 2007
|Comparison between ACI and AISC for Concrete-Filled Tubular Columns
British Library Online Contents | 1999
|Cyclic lateral response of FRP-confined circular concrete-filled steel tubular columns
British Library Online Contents | 2016
|Cyclic lateral response of FRP-confined circular concrete-filled steel tubular columns
Online Contents | 2016
|