Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Real-Time Probabilistic Flood Forecasting Using Multiple Machine Learning Methods
Probabilistic flood forecasting, which provides uncertain information in the forecasting of floods, is practical and informative for implementing flood-mitigation countermeasures. This study adopted various machine learning methods, including support vector regression (SVR), a fuzzy inference model (FIM), and the k-nearest neighbors (k-NN) method, to establish a probabilistic forecasting model. The probabilistic forecasting method is a combination of a deterministic forecast produced using SVR and a probability distribution of forecast errors determined by the FIM and k-NN method. This study proposed an FIM with a modified defuzzification scheme to transform the FIM’s output into a probability distribution, and k-NN was employed to refine the probability distribution. The probabilistic forecasting model was applied to forecast flash floods with lead times of 1−3 hours in Yilan River, Taiwan. Validation results revealed the deterministic forecasting to be accurate, and the probabilistic forecasting was promising in view of a forecasted hydrograph and quantitative assessment concerning the confidence level.
Real-Time Probabilistic Flood Forecasting Using Multiple Machine Learning Methods
Probabilistic flood forecasting, which provides uncertain information in the forecasting of floods, is practical and informative for implementing flood-mitigation countermeasures. This study adopted various machine learning methods, including support vector regression (SVR), a fuzzy inference model (FIM), and the k-nearest neighbors (k-NN) method, to establish a probabilistic forecasting model. The probabilistic forecasting method is a combination of a deterministic forecast produced using SVR and a probability distribution of forecast errors determined by the FIM and k-NN method. This study proposed an FIM with a modified defuzzification scheme to transform the FIM’s output into a probability distribution, and k-NN was employed to refine the probability distribution. The probabilistic forecasting model was applied to forecast flash floods with lead times of 1−3 hours in Yilan River, Taiwan. Validation results revealed the deterministic forecasting to be accurate, and the probabilistic forecasting was promising in view of a forecasted hydrograph and quantitative assessment concerning the confidence level.
Real-Time Probabilistic Flood Forecasting Using Multiple Machine Learning Methods
Dinh Ty Nguyen (Autor:in) / Shien-Tsung Chen (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Real-Time Flood Forecasting Using Neural Networks
British Library Online Contents | 1998
|Real-Time Flood Forecasting Using Adaptive Estimation
British Library Conference Proceedings | 1994
|Real-Time Flood Forecasting Using Adaptive Estimation
British Library Conference Proceedings | 1994
|Real-Time Flood Forecasting Using Neural Networks
Online Contents | 1998
|