Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Site Selection of Aquifer Thermal Energy Storage Systems in Shallow Groundwater Conditions
Underground thermal energy storage (UTES) systems are well known applications around the world, due to their relation to heating ventilation and air conditioning (HVAC) applications. There are six kinds of UTES systems, they are tank, pit, aquifer, cavern, tubes, and borehole. Apart from the tank, all other kinds are site condition dependent (hydro-geologically and geologically). The aquifer thermal energy storage (ATES) system is a widespread and desirable system, due to its thermal features and feasibility. In spite of all the advantages which it possesses, it has not been adopted in very shallow groundwater (less than 2 m depth) regions, till now, due to the susceptibility of the storage efficiency of these systems to the in-site parameters. This paper aims to find a reliable method that can be used to find the best location to install ATES systems. The concept of the suggested method is based on integrating three methods. They are, the analytical hierarchy process (AHP), the DRASTIC index method, and ArcMap/GIS software. The results from this method include a criterion that summarizes the best location to install an ATES system. This criterion is depicted by ArcMap/GIS software, producing raster maps that specify the best location for the storage system. The suggested method can be used to find the best location to install the thermal storage, especially in susceptible aquifers.
Site Selection of Aquifer Thermal Energy Storage Systems in Shallow Groundwater Conditions
Underground thermal energy storage (UTES) systems are well known applications around the world, due to their relation to heating ventilation and air conditioning (HVAC) applications. There are six kinds of UTES systems, they are tank, pit, aquifer, cavern, tubes, and borehole. Apart from the tank, all other kinds are site condition dependent (hydro-geologically and geologically). The aquifer thermal energy storage (ATES) system is a widespread and desirable system, due to its thermal features and feasibility. In spite of all the advantages which it possesses, it has not been adopted in very shallow groundwater (less than 2 m depth) regions, till now, due to the susceptibility of the storage efficiency of these systems to the in-site parameters. This paper aims to find a reliable method that can be used to find the best location to install ATES systems. The concept of the suggested method is based on integrating three methods. They are, the analytical hierarchy process (AHP), the DRASTIC index method, and ArcMap/GIS software. The results from this method include a criterion that summarizes the best location to install an ATES system. This criterion is depicted by ArcMap/GIS software, producing raster maps that specify the best location for the storage system. The suggested method can be used to find the best location to install the thermal storage, especially in susceptible aquifers.
Site Selection of Aquifer Thermal Energy Storage Systems in Shallow Groundwater Conditions
Qais Al-Madhlom (Autor:in) / Nadhir Al-Ansari (Autor:in) / Jan Laue (Autor:in) / Bo Nordell (Autor:in) / Hussain Musa Hussain (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
A refined groundwater flow model of the shallow aquifer in Tianjin Municipality, China
Online Contents | 2016
|Groundwater cooling of a large building using a shallow alluvial aquifer in Central London
Online Contents | 2013
|DOAJ | 2019
|Hydrogeochemistry of Shallow Groundwater in a Karst Aquifer System of Bijie City, Guizhou Province
DOAJ | 2017
|