Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Analyzing the Stability of Underground Mines Using 3D Point Cloud Data and Discontinuum Numerical Analysis
This study describes a precise numerical analysis process by adopting the real image of mine openings obtained by light detection and ranging (LiDAR), which can produce a point cloud data by measuring the target surface numerically. The analysis target was a section of an underground limestone mine, to which a hybrid room-and-pillar mining method that was developed to improve ore recovery was applied. It is important that the center axis and the volume of the vertical safety pillar in the lower parts match those in the upper parts. The 3D survey of the target section verified that the center axis of the vertical safety pillar in the lower parts had deviated in a north-westerly direction. In particular, the area of the lower part of the vertical safety pillar was approximately 34 m2 lower than the designed cross-sectional area, which was 100 m2. In order to analyze the stability of the vertical safety pillar, a discontinuum numerical analysis and safety factor analysis were conducted using 3D surveying results. The analysis verified that instability was caused by the joints distributed around the vertical safety pillar. In conclusion, investigation of the 3D survey and 3D numerical analysis techniques performed in this study are expected to provide higher reliability than the current techniques used for establishing whether mining plans require new mining methods or safety measures.
Analyzing the Stability of Underground Mines Using 3D Point Cloud Data and Discontinuum Numerical Analysis
This study describes a precise numerical analysis process by adopting the real image of mine openings obtained by light detection and ranging (LiDAR), which can produce a point cloud data by measuring the target surface numerically. The analysis target was a section of an underground limestone mine, to which a hybrid room-and-pillar mining method that was developed to improve ore recovery was applied. It is important that the center axis and the volume of the vertical safety pillar in the lower parts match those in the upper parts. The 3D survey of the target section verified that the center axis of the vertical safety pillar in the lower parts had deviated in a north-westerly direction. In particular, the area of the lower part of the vertical safety pillar was approximately 34 m2 lower than the designed cross-sectional area, which was 100 m2. In order to analyze the stability of the vertical safety pillar, a discontinuum numerical analysis and safety factor analysis were conducted using 3D surveying results. The analysis verified that instability was caused by the joints distributed around the vertical safety pillar. In conclusion, investigation of the 3D survey and 3D numerical analysis techniques performed in this study are expected to provide higher reliability than the current techniques used for establishing whether mining plans require new mining methods or safety measures.
Analyzing the Stability of Underground Mines Using 3D Point Cloud Data and Discontinuum Numerical Analysis
Seung-Joong Lee (Autor:in) / Sung-Oong Choi (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
A discontinuum analysis on underground utilities
British Library Conference Proceedings | 2008
|A Discontinuum Analysis of Underground Cavern
British Library Conference Proceedings | 2007
|British Library Conference Proceedings | 1996
|Unified continuum/discontinuum modeling framework for slope stability assessment
Online Contents | 2014
|Discontinuum Analysis of a Highway Tunnel
British Library Conference Proceedings | 2006
|