Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
An Improved Binomial Distribution-Based Trust Management Algorithm for Remote Patient Monitoring in WBANs
A wireless body area network (WBAN) is a technology that is widely employed in the medical sector. It is a low-cost network that allows for mobility and variation. It can be used for long-distance, semiautonomous remote monitoring without interfering with people’s regular schedules. Detection devices are embedded in the human body in a simple WBAN configuration to continuously screen physiological boundaries or critical pointers. Confidence among shareholders (for example, medical care suppliers, clients, and medical teachers) is recognized as an essential achievement factor for data stream reliability in such an organization. Given the inherent characteristics of remote locations, it is critical to exercise confidence and security when conducting remote comprehension testing. In the present scenario, WBAN has majorly contributed towards healthcare and its application in medical services. Solid correspondence systems are frequently used to address trust and security concerns on WBANs. In terms of purpose, we present in this study a communication approach built on trust to protect the WBAN’s integrity and confidentiality. For ensuring authenticity, an enhanced bilingual distribution-based trust-management system (PDATMS) approach is used, while a cryptographic system is used to maintain anonymity. A MATLAB simulator is used to evaluate the performance of the recommended program. The recommended approach, according to the release information, improves accuracy by 96%, service delivery rate by 99%, throughput by 99%, as well as confidence, while reducing average latency.
An Improved Binomial Distribution-Based Trust Management Algorithm for Remote Patient Monitoring in WBANs
A wireless body area network (WBAN) is a technology that is widely employed in the medical sector. It is a low-cost network that allows for mobility and variation. It can be used for long-distance, semiautonomous remote monitoring without interfering with people’s regular schedules. Detection devices are embedded in the human body in a simple WBAN configuration to continuously screen physiological boundaries or critical pointers. Confidence among shareholders (for example, medical care suppliers, clients, and medical teachers) is recognized as an essential achievement factor for data stream reliability in such an organization. Given the inherent characteristics of remote locations, it is critical to exercise confidence and security when conducting remote comprehension testing. In the present scenario, WBAN has majorly contributed towards healthcare and its application in medical services. Solid correspondence systems are frequently used to address trust and security concerns on WBANs. In terms of purpose, we present in this study a communication approach built on trust to protect the WBAN’s integrity and confidentiality. For ensuring authenticity, an enhanced bilingual distribution-based trust-management system (PDATMS) approach is used, while a cryptographic system is used to maintain anonymity. A MATLAB simulator is used to evaluate the performance of the recommended program. The recommended approach, according to the release information, improves accuracy by 96%, service delivery rate by 99%, throughput by 99%, as well as confidence, while reducing average latency.
An Improved Binomial Distribution-Based Trust Management Algorithm for Remote Patient Monitoring in WBANs
Sunny Singh (Autor:in) / Muskaan Chawla (Autor:in) / Devendra Prasad (Autor:in) / Divya Anand (Autor:in) / Abdullah Alharbi (Autor:in) / Wael Alosaimi (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
A Cooperative Transmission Scheme in Radio Frequency Energy-Harvesting WBANs
DOAJ | 2023
|British Library Online Contents | 2013
|Remote Monitoring of Amur Tigers in Forest Ecosystems Using Improved YOLOX Algorithm
DOAJ | 2023
|An application of Binomial distribution series on certain analytic functions
British Library Online Contents | 2019
|