Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Hydro-Geochemistry and Groundwater Quality Assessment of Ouargla Basin, South of Algeria
This study aims to evaluate the hydro-chemical characteristics of Ouargla, Algeria basin groundwaters harvested from the Mio Pliocene aquifer. The study covered 70 samples; the physical parameters, potential of hydrogen (pH), and electrical conductivity EC μS.cm−1 were determined in situ, using a multiparameter; the laboratory analysis included dry residuals DR (mg/L), calcium Ca2+ (mg/L), magnesium Mg2+ (mg/L), sodium Na+ (mg/L), potassium K+ (mg/L), bicarbonates HCO3− (mg/L), sulfates SO42− (mg/L), and chloride Cl− (mg/L). The piper diagram shows that the Ouargla basin ground waters divided into two facies, sodic chlorinated in 93% and sodic sulphated in 7% of samples. The United States Salinity Laboratory Staff (USSL) diagram was used to detect the suitability of groundwater in irrigation where the results show that the groundwater was classed into two classes, poor water (C4 S4) and bad water (C4 S4). Furthermore, indices such as the Kelly index (KI), sodium adsorption ratio (SAR), sodium solubility percentage (Na%), and magnesium hazards (MH) confirm the negative effect of groundwater on soil permeability in 96%, 80%, 89%, and 53% of samples. The permeability index (PI) shows that the analyzed samples were considered as doubtful (71%) and safe (29%), otherwise there is no risk related to residual sodium carbonate (RSC). The geo-spatial distribution of deferent indices shows that all the study area has poor groundwater for irrigation, except the south-west part, where the groundwaters of this sub-area do not form a problem related to RSC.
Hydro-Geochemistry and Groundwater Quality Assessment of Ouargla Basin, South of Algeria
This study aims to evaluate the hydro-chemical characteristics of Ouargla, Algeria basin groundwaters harvested from the Mio Pliocene aquifer. The study covered 70 samples; the physical parameters, potential of hydrogen (pH), and electrical conductivity EC μS.cm−1 were determined in situ, using a multiparameter; the laboratory analysis included dry residuals DR (mg/L), calcium Ca2+ (mg/L), magnesium Mg2+ (mg/L), sodium Na+ (mg/L), potassium K+ (mg/L), bicarbonates HCO3− (mg/L), sulfates SO42− (mg/L), and chloride Cl− (mg/L). The piper diagram shows that the Ouargla basin ground waters divided into two facies, sodic chlorinated in 93% and sodic sulphated in 7% of samples. The United States Salinity Laboratory Staff (USSL) diagram was used to detect the suitability of groundwater in irrigation where the results show that the groundwater was classed into two classes, poor water (C4 S4) and bad water (C4 S4). Furthermore, indices such as the Kelly index (KI), sodium adsorption ratio (SAR), sodium solubility percentage (Na%), and magnesium hazards (MH) confirm the negative effect of groundwater on soil permeability in 96%, 80%, 89%, and 53% of samples. The permeability index (PI) shows that the analyzed samples were considered as doubtful (71%) and safe (29%), otherwise there is no risk related to residual sodium carbonate (RSC). The geo-spatial distribution of deferent indices shows that all the study area has poor groundwater for irrigation, except the south-west part, where the groundwaters of this sub-area do not form a problem related to RSC.
Hydro-Geochemistry and Groundwater Quality Assessment of Ouargla Basin, South of Algeria
Zina Mansouri (Autor:in) / Youcef Leghrieb (Autor:in) / Saber Kouadri (Autor:in) / Nadhir Al-Ansari (Autor:in) / Hadee Mohammed Najm (Autor:in) / Nuha S. Mashaan (Autor:in) / Moutaz Mustafa A. Eldirderi (Autor:in) / Khaled Mohamed Khedher (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2019
|Hamiz hydro-electric plant, Algeria
Engineering Index Backfile | 1946
DOAJ | 2022
|Hydro-Geochemical Assessment of Groundwater Quality in Aseer Region, Saudi Arabia
DOAJ | 2018
|