Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Reclamation of Saline–Sodic Soils with Combined Amendments: Impact on Quinoa Performance and Biological Soil Quality
The objective of this study was to evaluate the individual and synergic effects of the application of Biochar (B), Humic Substances (HS), and Gypsum (G) on the soil properties of a saline–sodic soil, and plant growth and seed quality (polyphenols, protein and yield) of quinoa. Treatments included (B) 22 t ha−1, (HS) 5 kg ha−1, and (G) 47.7 t ha−1. Two quinoa genotypes from Arid Zones (AZ-51 and AZ-103) were selected and established in eight treatments. The B + HS + G combined treatment resulted in increases in root biomass of 206% and 176% in AZ-51 and AZ-103, respectively. Furthermore, electrical conductivity (ECe), sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP) decreased significantly in all treated soils. When compared to the control, ESP decreased 11-fold in the G treatment, and 9–13-fold in the B + G; B + HS; and B + HS + G treatments. Similarly, soil microbial biomass increased 112% and 322% in the B + HS + G treatment in AZ-51 and AZ-103 genotypes, respectively. Therefore, it can be concluded that the application of combined amendments (B + HS + G) represents an alternative for reclaiming degraded soils, including saline–sodic soils.
Reclamation of Saline–Sodic Soils with Combined Amendments: Impact on Quinoa Performance and Biological Soil Quality
The objective of this study was to evaluate the individual and synergic effects of the application of Biochar (B), Humic Substances (HS), and Gypsum (G) on the soil properties of a saline–sodic soil, and plant growth and seed quality (polyphenols, protein and yield) of quinoa. Treatments included (B) 22 t ha−1, (HS) 5 kg ha−1, and (G) 47.7 t ha−1. Two quinoa genotypes from Arid Zones (AZ-51 and AZ-103) were selected and established in eight treatments. The B + HS + G combined treatment resulted in increases in root biomass of 206% and 176% in AZ-51 and AZ-103, respectively. Furthermore, electrical conductivity (ECe), sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP) decreased significantly in all treated soils. When compared to the control, ESP decreased 11-fold in the G treatment, and 9–13-fold in the B + G; B + HS; and B + HS + G treatments. Similarly, soil microbial biomass increased 112% and 322% in the B + HS + G treatment in AZ-51 and AZ-103 genotypes, respectively. Therefore, it can be concluded that the application of combined amendments (B + HS + G) represents an alternative for reclaiming degraded soils, including saline–sodic soils.
Reclamation of Saline–Sodic Soils with Combined Amendments: Impact on Quinoa Performance and Biological Soil Quality
María Alcívar (Autor:in) / Andrés Zurita-Silva (Autor:in) / Marco Sandoval (Autor:in) / Cristina Muñoz (Autor:in) / Mauricio Schoebitz (Autor:in)
2018
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Conference Proceedings | 2013
|Sodic Soil Reclamation Using Multicomponent Transport Modeling
British Library Online Contents | 1997
|Optimal control solutions to sodic soil reclamation
British Library Online Contents | 2016
|