Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Onsite Wastewater Treatment Upgrade for Water Reuse in Cooling Towers and Toilets
The increasing population size and housing density are responsible for greater consumption of water resources, causing drinking water shortages in many regions. To reduce water consumption, it is essential to perform wastewater treatment, particularly in onsite non-potable water systems (ONWS). This article discusses the performance of a wastewater treatment system in a shopping mall in Brazil (City of Guarulhos, São Paulo State, Brazil), using data collected over 3 years (2015–2018) that resulted in water reuse ranging from 12 to 42 m³ per day. The strategy used for this wastewater treatment and further reuse in cooling towers and toilets initially included nine steps; after adjustments, an additional step (tertiary decanter) was added. All steps were named as follows: (1) railing; (2) fats boxes; (3) aerobic reactors with selector tank; (4) denitrification; (5) flocculation; (6) secondary decanter; (7) ultrafiltration; (8) disinfection; (9) filtration by zeolites; and (10) tertiary decanter. Based on using FeCl3 as a flocculant followed by filtration by zeolites (SFM) for ion adsorption and removing above 99% of the biological oxygen demand (BOD5), generating a final BOD5 of <2.0 mg/L, total dissolved solids of 130 to 594 mg/L, pH ranging from 6.75 to 7.79, and remaining pathogen-free. This treatment demonstrated the feasibility of reusing water in air conditioning cooling towers and toilets, generating up to 797 m³/month of treated water for reuse with savings of up to 27% in drinking water consumption at the mall.
Onsite Wastewater Treatment Upgrade for Water Reuse in Cooling Towers and Toilets
The increasing population size and housing density are responsible for greater consumption of water resources, causing drinking water shortages in many regions. To reduce water consumption, it is essential to perform wastewater treatment, particularly in onsite non-potable water systems (ONWS). This article discusses the performance of a wastewater treatment system in a shopping mall in Brazil (City of Guarulhos, São Paulo State, Brazil), using data collected over 3 years (2015–2018) that resulted in water reuse ranging from 12 to 42 m³ per day. The strategy used for this wastewater treatment and further reuse in cooling towers and toilets initially included nine steps; after adjustments, an additional step (tertiary decanter) was added. All steps were named as follows: (1) railing; (2) fats boxes; (3) aerobic reactors with selector tank; (4) denitrification; (5) flocculation; (6) secondary decanter; (7) ultrafiltration; (8) disinfection; (9) filtration by zeolites; and (10) tertiary decanter. Based on using FeCl3 as a flocculant followed by filtration by zeolites (SFM) for ion adsorption and removing above 99% of the biological oxygen demand (BOD5), generating a final BOD5 of <2.0 mg/L, total dissolved solids of 130 to 594 mg/L, pH ranging from 6.75 to 7.79, and remaining pathogen-free. This treatment demonstrated the feasibility of reusing water in air conditioning cooling towers and toilets, generating up to 797 m³/month of treated water for reuse with savings of up to 27% in drinking water consumption at the mall.
Onsite Wastewater Treatment Upgrade for Water Reuse in Cooling Towers and Toilets
Luiz Antonio Papp (Autor:in) / Flávio Aparecido Rodrigues (Autor:in) / Wagner Alves de Souza Júdice (Autor:in) / Welington Luiz Araújo (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Onsite Graywater Reuse: Treatment and Climate
British Library Conference Proceedings | 2009
|High-Strength Domestic Wastewater Treatment and Reuse with Onsite Passive Methods
DOAJ | 2018
|Impacts of onsite greywater reuse on urban wastewater systems
TIBKAT | 2016
|TARGETED ONSITE REUSE FOR INTEGRATED WATER STRATEGY
TIBKAT | 2021
|