Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Infiltration and Inflow (I/I) to Wastewater Systems in Norway, Sweden, Denmark, and Finland
Infiltration and inflow of non-sewer water to the wastewater network (I/I-water) may have a number of both financial and environmental consequences. In Norway, there are two commonly used methods for calculating the volume of I/I-water, The Dilution method (DM) and the Water Balance Method (WBM). When comparing the methods, the WBM gives a lower value of I/I-water than the DM. Analysis shows that the volume of I/I-water for some large Norwegian wastewater plants is decreasing. From 2009 to 2016, the average value has decreased from 70% to 66% of the total annual flow. For investigated Danish districts the average amount of I/I-water is stable, on about 30%. Calculations performed by the Finnish Water Utilities Association shows a stable percentage of I/I-water on about 40% in Finland from 2010 to 2016. Calculations on Swedish wastewater plants show a reduction in I/I-water from 58% to 46% from 2010 to 2016. For the districts Asker, Bærum, and Drammen in Norway, the amount of I/I-water is increasing with increasing percentage of combined sewer systems. This is also the case for investigated plants in Norway, Sweden, and Finland. The exception is Denmark, with a high percentage of combined systems, but a low percentage of I/I-water. Investigations done for Asker, Bærum, Drammen, and the two Danish districts Randers and Esbjerg vest, show a correlation between rainfall and I/I-water only for Asker and Esbjerg vest.
Infiltration and Inflow (I/I) to Wastewater Systems in Norway, Sweden, Denmark, and Finland
Infiltration and inflow of non-sewer water to the wastewater network (I/I-water) may have a number of both financial and environmental consequences. In Norway, there are two commonly used methods for calculating the volume of I/I-water, The Dilution method (DM) and the Water Balance Method (WBM). When comparing the methods, the WBM gives a lower value of I/I-water than the DM. Analysis shows that the volume of I/I-water for some large Norwegian wastewater plants is decreasing. From 2009 to 2016, the average value has decreased from 70% to 66% of the total annual flow. For investigated Danish districts the average amount of I/I-water is stable, on about 30%. Calculations performed by the Finnish Water Utilities Association shows a stable percentage of I/I-water on about 40% in Finland from 2010 to 2016. Calculations on Swedish wastewater plants show a reduction in I/I-water from 58% to 46% from 2010 to 2016. For the districts Asker, Bærum, and Drammen in Norway, the amount of I/I-water is increasing with increasing percentage of combined sewer systems. This is also the case for investigated plants in Norway, Sweden, and Finland. The exception is Denmark, with a high percentage of combined systems, but a low percentage of I/I-water. Investigations done for Asker, Bærum, Drammen, and the two Danish districts Randers and Esbjerg vest, show a correlation between rainfall and I/I-water only for Asker and Esbjerg vest.
Infiltration and Inflow (I/I) to Wastewater Systems in Norway, Sweden, Denmark, and Finland
Kristin Jenssen Sola (Autor:in) / Jarle Tommy Bjerkholt (Autor:in) / Oddvar Georg Lindholm (Autor:in) / Harsha Ratnaweera (Autor:in)
2018
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
SPECIAL REPORT: SCANDINAVIA - MARKET REVIEWS - Finland, Denmark, Sweden and Norway
Online Contents | 2012
Territorial cohesion in Denmark, Finland, Norway and Sweden 2007 and 2017
BASE | 2021
|Territorial cohesion in Denmark, Finland, Norway and Sweden 2007 and 2017
BASE | 2021
|Controlling Inflow and Infiltration in Wastewater Collection Systems
British Library Conference Proceedings | 2000
|