Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Basic Research in Human–Computer–Biosphere Interaction
In this study, we present a vision of how a human–computer–biosphere interaction (HCBI) can facilitate a sustainable society. HCBI extends and transforms the subject of human–computer interaction from countable people, objects, pets, and plants into an auditory biosphere that is an uncountable, a complex, and a non-linguistic soundscape. As an example, utilizing HCBI to experience forest soundscapes can help us feel one with nature, without physically being present in nature. The goal of HCBI is to achieve ecological interactions between humans and nature through computer systems without causing environmental destruction. To accomplish this, information connectivity must be created despite the physical separation between humans and the environment. This combination should also ensure ecological neutrality. In this paper, we present an overview of an HCBI concept, related work, methodologies, and developed interfaces. We used pre-recorded animal calls to enable a bio-acoustical feedback from the target wildlife. In this study, we primarily focus on the design and evaluation of a bio-acoustic interaction system utilizing tracking collars, microphones, speakers, infrared cameras, infrared heat sensors, micro-climate sensors, radio-tracking devices, GPS devices, radio clocks, embedded Linux boards, high-capacity batteries, and high-speed wireless communication devices. Our experiments successfully demonstrated bio-acoustic interactions between wildlife—more specifically, an endangered species of a wild cat—and human beings via a computer system, thus validating the HCBI concept.
Basic Research in Human–Computer–Biosphere Interaction
In this study, we present a vision of how a human–computer–biosphere interaction (HCBI) can facilitate a sustainable society. HCBI extends and transforms the subject of human–computer interaction from countable people, objects, pets, and plants into an auditory biosphere that is an uncountable, a complex, and a non-linguistic soundscape. As an example, utilizing HCBI to experience forest soundscapes can help us feel one with nature, without physically being present in nature. The goal of HCBI is to achieve ecological interactions between humans and nature through computer systems without causing environmental destruction. To accomplish this, information connectivity must be created despite the physical separation between humans and the environment. This combination should also ensure ecological neutrality. In this paper, we present an overview of an HCBI concept, related work, methodologies, and developed interfaces. We used pre-recorded animal calls to enable a bio-acoustical feedback from the target wildlife. In this study, we primarily focus on the design and evaluation of a bio-acoustic interaction system utilizing tracking collars, microphones, speakers, infrared cameras, infrared heat sensors, micro-climate sensors, radio-tracking devices, GPS devices, radio clocks, embedded Linux boards, high-capacity batteries, and high-speed wireless communication devices. Our experiments successfully demonstrated bio-acoustic interactions between wildlife—more specifically, an endangered species of a wild cat—and human beings via a computer system, thus validating the HCBI concept.
Basic Research in Human–Computer–Biosphere Interaction
Hill Hiroki Kobayashi (Autor:in) / Jun Matsushima (Autor:in)
2014
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2001
Protecting Natural Resources: Interdisciplinary Biosphere Monitoring and Research
British Library Conference Proceedings | 1994
|Online Contents | 1993
Online Contents | 1999
|Toward Urban Biosphere Reserves
Wiley | 2004
|