Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Tunnel Surface Settlement Forecasting with Ensemble Learning
Ground surface settlement forecasting in the process of tunnel construction is one of the most important techniques towards sustainable city development and preventing serious damages, such as landscape collapse. It is evident that modern artificial intelligence (AI) models, such as artificial neural network, extreme learning machine, and support vector regression, are capable of providing reliable forecasting results for tunnel surface settlement. However, two limitations exist for the current forecasting techniques. First, the data provided by the construction company are usually univariate (i.e., containing only the settlement data). Second, the demand of tunnel surface settlement is immediate after the construction process begins. The number of training data samples is limited. Targeting at the above two limitations, in this study, a novel ensemble machine learning model is proposed to forecast tunnel surface settlement using univariate short period of real-world tunnel settlement data. The proposed Adaboost.RT framework fully utilizes existing data points with three base machine learning models and iteratively updates hyperparameters using current surface point locations. Experimental results show that compared with existing machine learning techniques and algorithms, the proposed ensemble learning method provides a higher prediction accuracy with acceptable computational efficiency.
Tunnel Surface Settlement Forecasting with Ensemble Learning
Ground surface settlement forecasting in the process of tunnel construction is one of the most important techniques towards sustainable city development and preventing serious damages, such as landscape collapse. It is evident that modern artificial intelligence (AI) models, such as artificial neural network, extreme learning machine, and support vector regression, are capable of providing reliable forecasting results for tunnel surface settlement. However, two limitations exist for the current forecasting techniques. First, the data provided by the construction company are usually univariate (i.e., containing only the settlement data). Second, the demand of tunnel surface settlement is immediate after the construction process begins. The number of training data samples is limited. Targeting at the above two limitations, in this study, a novel ensemble machine learning model is proposed to forecast tunnel surface settlement using univariate short period of real-world tunnel settlement data. The proposed Adaboost.RT framework fully utilizes existing data points with three base machine learning models and iteratively updates hyperparameters using current surface point locations. Experimental results show that compared with existing machine learning techniques and algorithms, the proposed ensemble learning method provides a higher prediction accuracy with acceptable computational efficiency.
Tunnel Surface Settlement Forecasting with Ensemble Learning
Ke Yan (Autor:in) / Yuting Dai (Autor:in) / Meiling Xu (Autor:in) / Yuchang Mo (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Forecasting Foundation Settlement
Springer Verlag | 2000
|Forecasting Foundation Settlement
British Library Online Contents | 2000
|Forecasting Foundation Settlement
Online Contents | 2000
|Tunnel structure settlement device and tunnel structure settlement deviation rectifying method
Europäisches Patentamt | 2021
|