Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Structural Behavior of LC-GFRP Confined Waste Aggregate Concrete Square Columns with Sharp and Round Corners
Reusing construction brick waste to fabricate new concrete is an economical and sustainable solution for the ever-increasing quantity of construction waste. However, the substandard mechanical properties of the concrete made using recycled crushed brick aggregates (RBAC) have limited its use mainly to non-structural applications. Several studies have shown that the axial compressive performance of the concrete is a function of the lateral confining pressure. Therefore, this study proposes to use low-cost glass fiber-reinforced polymer (LC-GFRP) wraps to improve the substandard compressive strength and ductility of RBAC. Thirty-two rectilinear RBAC specimens were constructed in this study and tested in two groups. The specimens in Group 1 were tested without the provision of a corner radius, whereas a corner radius of 26 mm was provided in the Group 2 specimens. Specimens in both groups demonstrated improved compressive behavior. However, the premature failure of LC-GFRP wraps near the sharp corners in Group 1 specimens undermined its efficacy. On the contrary, the stress concentrations were neutralized in almost all Group 2 specimens with a 26 mm corner radius, except low-strength specimen with six layers of LC-GFRP. As a result, Group 2 specimens demonstrated a more significant improvement in peak compressive strength and ultimate strain than Group 1 specimens. An analytical investigation was carried out to assess the efficiency of existing compressive stress–strain models to predict the peak compressive stress and ultimate of LC-GFRP-confined RBAC. Existing FRP models were found unreliable in predicting the key parameters in the stress–strain curves of LC-GFRP-confined RBAC. Equations were proposed by using nonlinear regression analysis, and the predicted values of the key parameters were found in good agreement with the corresponding experimental values.
Structural Behavior of LC-GFRP Confined Waste Aggregate Concrete Square Columns with Sharp and Round Corners
Reusing construction brick waste to fabricate new concrete is an economical and sustainable solution for the ever-increasing quantity of construction waste. However, the substandard mechanical properties of the concrete made using recycled crushed brick aggregates (RBAC) have limited its use mainly to non-structural applications. Several studies have shown that the axial compressive performance of the concrete is a function of the lateral confining pressure. Therefore, this study proposes to use low-cost glass fiber-reinforced polymer (LC-GFRP) wraps to improve the substandard compressive strength and ductility of RBAC. Thirty-two rectilinear RBAC specimens were constructed in this study and tested in two groups. The specimens in Group 1 were tested without the provision of a corner radius, whereas a corner radius of 26 mm was provided in the Group 2 specimens. Specimens in both groups demonstrated improved compressive behavior. However, the premature failure of LC-GFRP wraps near the sharp corners in Group 1 specimens undermined its efficacy. On the contrary, the stress concentrations were neutralized in almost all Group 2 specimens with a 26 mm corner radius, except low-strength specimen with six layers of LC-GFRP. As a result, Group 2 specimens demonstrated a more significant improvement in peak compressive strength and ultimate strain than Group 1 specimens. An analytical investigation was carried out to assess the efficiency of existing compressive stress–strain models to predict the peak compressive stress and ultimate of LC-GFRP-confined RBAC. Existing FRP models were found unreliable in predicting the key parameters in the stress–strain curves of LC-GFRP-confined RBAC. Equations were proposed by using nonlinear regression analysis, and the predicted values of the key parameters were found in good agreement with the corresponding experimental values.
Structural Behavior of LC-GFRP Confined Waste Aggregate Concrete Square Columns with Sharp and Round Corners
Rattapoohm Parichatprecha (Autor:in) / Kittipoom Rodsin (Autor:in) / Krisada Chaiyasarn (Autor:in) / Nazam Ali (Autor:in) / Songsak Suthasupradit (Autor:in) / Qudeer Hussain (Autor:in) / Kaffayatullah Khan (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Axial Load Behavior of Concrete Columns Confined with GFRP Spirals
Online Contents | 2013
|Axial Load Behavior of Concrete Columns Confined with GFRP Spirals
British Library Online Contents | 2013
|