Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Karst Aquifer Recharge: Comments on Somaratne, N. Characteristics of Point Recharge in Karst Aquifers. Water 2014, 6, 2782–2807
The article “Characteristics of Point Recharge in Karst Aquifers, Water 6: 2782–2807” by N. Somaratne evaluates various recharge estimation techniques applied to four limestone aquifers in South Australia. Somaratne [1] concludes that methods based on watertable fluctuations, groundwater modelling and water budgets are independent of recharge processes, and are therefore superior to the chloride mass balance (CMB) approach for karst aquifers. The current comment offers alternative interpretations from existing field measurements and previous literature, in particular for the Uley South aquifer, which is the focus of much of the article by Somaratne [1]. Conclusions regarding this system are revised, partly to account for the misrepresentation of previous studies. The aeolianite sediments of Uley South are mostly unconsolidated or poorly consolidated, and dissolution features in the calcrete capping provide point infiltration into a predominantly unconsolidated vadose zone, whereas Somaratne’s [1] findings require that the system comprises well-developed conduits in otherwise low-conductivity limestone. Somaratne’s [1] assertion that the basic premise of CMB is violated in Uley South is disputable, given strong evidence of relatively well-mixed groundwater arising from mostly diffuse recharge. The characterization of karst aquifer recharge should continue to rely on multiple techniques, including environmental tracers such as chloride.
Karst Aquifer Recharge: Comments on Somaratne, N. Characteristics of Point Recharge in Karst Aquifers. Water 2014, 6, 2782–2807
The article “Characteristics of Point Recharge in Karst Aquifers, Water 6: 2782–2807” by N. Somaratne evaluates various recharge estimation techniques applied to four limestone aquifers in South Australia. Somaratne [1] concludes that methods based on watertable fluctuations, groundwater modelling and water budgets are independent of recharge processes, and are therefore superior to the chloride mass balance (CMB) approach for karst aquifers. The current comment offers alternative interpretations from existing field measurements and previous literature, in particular for the Uley South aquifer, which is the focus of much of the article by Somaratne [1]. Conclusions regarding this system are revised, partly to account for the misrepresentation of previous studies. The aeolianite sediments of Uley South are mostly unconsolidated or poorly consolidated, and dissolution features in the calcrete capping provide point infiltration into a predominantly unconsolidated vadose zone, whereas Somaratne’s [1] findings require that the system comprises well-developed conduits in otherwise low-conductivity limestone. Somaratne’s [1] assertion that the basic premise of CMB is violated in Uley South is disputable, given strong evidence of relatively well-mixed groundwater arising from mostly diffuse recharge. The characterization of karst aquifer recharge should continue to rely on multiple techniques, including environmental tracers such as chloride.
Karst Aquifer Recharge: Comments on Somaratne, N. Characteristics of Point Recharge in Karst Aquifers. Water 2014, 6, 2782–2807
Adrian D. Werner (Autor:in)
2014
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
How Karst Features Affect Recharge? Implication for Estimating Recharge to the Edwards Aquifer
British Library Conference Proceedings | 2005
|Recharge Impulse Spreading in Western Carpathian’s Mountainous Fissure–Karst Aquifer
DOAJ | 2019
|Recharge of River Water to Karst Aquifer Determined by Hydrogeochemistry and Stable Isotopes
DOAJ | 2019
|