Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Change of the mode of failure by interface friction and width-to-height ratio of coal specimens
Bumps in coal mines have been recognized as a major hazard for many years. These sudden and violent failures around mine openings have compromised safety, ventilation and access to mine workings. Previous studies showed that the violence of coal specimen failure depends on both the interface friction and width-to-height (W/H) ratio of coal specimen. The mode of failure for a uniaxially loaded coal specimen or a coal pillar is a combination of both shear failure along the interface and compressive failure in the coal. The shear failure along the interface triggered the compressive failure in coal. The compressive failure of a coal specimen or a coal pillar can be controlled by changing its W/H ratio. As the W/H ratio increases, the ultimate strength increases. Hence, with a proper combination of interface friction and the W/H ratio of pillar or coal specimen, the mode of failure will change from sudden violent failure which is brittle failure to non-violent failure which is ductile failure. The main objective of this paper is to determine at what W/H ratio and interface friction the mode of failure changes from violent to non-violent. In this research, coal specimens of W/H ratio ranging from 1 to 10 were uniaxially tested under two interface frictions of 0.1 and 0.25, and the results are presented and discussed.
Change of the mode of failure by interface friction and width-to-height ratio of coal specimens
Bumps in coal mines have been recognized as a major hazard for many years. These sudden and violent failures around mine openings have compromised safety, ventilation and access to mine workings. Previous studies showed that the violence of coal specimen failure depends on both the interface friction and width-to-height (W/H) ratio of coal specimen. The mode of failure for a uniaxially loaded coal specimen or a coal pillar is a combination of both shear failure along the interface and compressive failure in the coal. The shear failure along the interface triggered the compressive failure in coal. The compressive failure of a coal specimen or a coal pillar can be controlled by changing its W/H ratio. As the W/H ratio increases, the ultimate strength increases. Hence, with a proper combination of interface friction and the W/H ratio of pillar or coal specimen, the mode of failure will change from sudden violent failure which is brittle failure to non-violent failure which is ductile failure. The main objective of this paper is to determine at what W/H ratio and interface friction the mode of failure changes from violent to non-violent. In this research, coal specimens of W/H ratio ranging from 1 to 10 were uniaxially tested under two interface frictions of 0.1 and 0.25, and the results are presented and discussed.
Change of the mode of failure by interface friction and width-to-height ratio of coal specimens
Gamal Rashed (Autor:in) / Syd S. Peng (Autor:in)
2015
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Influence of width/height ratio on post-failure behaviour of coal
Online Contents | 1986
|Limits of Height-to-Width Ratio for Base Isolated Buildings
British Library Conference Proceedings | 2003
|Blasting demolition method for frame structure with small height-width ratio
Europäisches Patentamt | 2023
|Models of Aqueducts with Different Height-Width Ratio on Rigid Buttress
British Library Conference Proceedings | 2011
|Effect of height to width ratio on the dynamics of ultrasonic consolidation
Tema Archiv | 2010
|