Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Anaerobic Digestion of Food Waste with Unconventional Co-Substrates for Stable Biogas Production at High Organic Loading Rates
Anaerobic digestion (AD) is widely considered a more sustainable food waste management method than conventional technologies, such as landfilling and incineration. To improve economic performance while maintaining AD system stability at commercial scale, food waste is often co-digested with animal manure, but there is increasing interest in food waste-only digestion. We investigated the stability of anaerobic digestion with mixed cafeteria food waste (CFW) as the main substrate, combined in a semi-continuous mode with acid whey, waste bread, waste energy drinks, and soiled paper napkins as co-substrates. During digestion of CFW without any co-substrates, the maximum specific methane yield (SMY) was 363 mL gVS−1d−1 at organic loading rate (OLR) of 2.8 gVSL−1d−1, and reactor failure occurred at OLR of 3.5 gVSL−1d−1. Co-substrates of acid whey, waste energy drinks, and waste bread resulted in maximum SMY of 455, 453, and 479 mL gVS−1d−1, respectively, and it was possible to achieve stable digestion at OLR as high as 4.4 gVSL−1d−1. These results offer a potential approach to high organic loading rate digestion of food waste without using animal manure. Process optimization for the use of unconventional co-substrates may help enable deployment of anaerobic digesters for food waste management in urban and institutional applications and enable increased diversion of food waste from landfills in heavily populated regions.
Anaerobic Digestion of Food Waste with Unconventional Co-Substrates for Stable Biogas Production at High Organic Loading Rates
Anaerobic digestion (AD) is widely considered a more sustainable food waste management method than conventional technologies, such as landfilling and incineration. To improve economic performance while maintaining AD system stability at commercial scale, food waste is often co-digested with animal manure, but there is increasing interest in food waste-only digestion. We investigated the stability of anaerobic digestion with mixed cafeteria food waste (CFW) as the main substrate, combined in a semi-continuous mode with acid whey, waste bread, waste energy drinks, and soiled paper napkins as co-substrates. During digestion of CFW without any co-substrates, the maximum specific methane yield (SMY) was 363 mL gVS−1d−1 at organic loading rate (OLR) of 2.8 gVSL−1d−1, and reactor failure occurred at OLR of 3.5 gVSL−1d−1. Co-substrates of acid whey, waste energy drinks, and waste bread resulted in maximum SMY of 455, 453, and 479 mL gVS−1d−1, respectively, and it was possible to achieve stable digestion at OLR as high as 4.4 gVSL−1d−1. These results offer a potential approach to high organic loading rate digestion of food waste without using animal manure. Process optimization for the use of unconventional co-substrates may help enable deployment of anaerobic digesters for food waste management in urban and institutional applications and enable increased diversion of food waste from landfills in heavily populated regions.
Anaerobic Digestion of Food Waste with Unconventional Co-Substrates for Stable Biogas Production at High Organic Loading Rates
Swati Hegde (Autor:in) / Thomas A. Trabold (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Effects of Different Materials on Biogas Production during Anaerobic Digestion of Food Waste
DOAJ | 2023
|Biogas production from anaerobic digestion of food waste and relevant air quality implications
Taylor & Francis Verlag | 2017
|Biogas Generation Through Anaerobic Digestion of Organic Waste: A Review
Springer Verlag | 2022
|DOAJ | 2022
|