Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Serious Sensor Placement—Optimal Sensor Placement as a Serious Game
In this paper, we present a novel approach in water loss research combining two different topics: The optimal placement of pressure sensors to localize leaks in water distribution systems and Serious Gaming—games that are not only entertaining but that are also serving another purpose. The goal was to create a web interface, through which gamers could place sensors in a water distribution system model, in order to improve these sensor positions after they had been evaluated by a suitable algorithm. Two game objectives are to be pursued by the players: reaching a specified net coverage while not using more than a maximum number of sensors. For this purpose, an existing optimal sensor placement algorithm was extended and implemented, together with two hydraulic models taken from literature. The resulting Serious Game was then tested and rated in a case study. The results showed that human players are able to reach solutions that are similar regarding net coverage to those obtained by optimization, within in a short amount of time. Furthermore, it was shown that the implementation of the ideal sensor placement problem as a Serious Game motivates the players to get better and better results, while also providing them with an enjoyable gaming experience.
Serious Sensor Placement—Optimal Sensor Placement as a Serious Game
In this paper, we present a novel approach in water loss research combining two different topics: The optimal placement of pressure sensors to localize leaks in water distribution systems and Serious Gaming—games that are not only entertaining but that are also serving another purpose. The goal was to create a web interface, through which gamers could place sensors in a water distribution system model, in order to improve these sensor positions after they had been evaluated by a suitable algorithm. Two game objectives are to be pursued by the players: reaching a specified net coverage while not using more than a maximum number of sensors. For this purpose, an existing optimal sensor placement algorithm was extended and implemented, together with two hydraulic models taken from literature. The resulting Serious Game was then tested and rated in a case study. The results showed that human players are able to reach solutions that are similar regarding net coverage to those obtained by optimization, within in a short amount of time. Furthermore, it was shown that the implementation of the ideal sensor placement problem as a Serious Game motivates the players to get better and better results, while also providing them with an enjoyable gaming experience.
Serious Sensor Placement—Optimal Sensor Placement as a Serious Game
Georg Arbesser-Rastburg (Autor:in) / Daniela Fuchs-Hanusch (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Optimal Sensor Placement for Damage Detection
British Library Conference Proceedings | 2006
|Optimal sensor placement for fault detection
Online Contents | 2001
|Optimal sensor placement for structural parameter identification
British Library Online Contents | 2017
|Optimal Sensor Placement in Structural Control Systems
British Library Online Contents | 2004
|Optimal Sensor Placement for Efficient Structural Health Monitoring
British Library Conference Proceedings | 2007
|