Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
A refined deviatoric hardening plastic model for sand
The classical deviatoric hardening models are capable of characterizing the mechanical response of granular materials for a broad range of degrees of compaction. This work finds that it has limitations in accurately predicting the volumetric deformation characteristics under a wide range of confining/consolidation pressures. The issue stems from the pressure independent hardening law in the classical deviatoric hardening model. To overcome this problem, we propose a refined deviatoric hardening model in which a pressure-dependent hardening law is developed based on experimental observations. Comparisons between numerical results and laboratory triaxial tests indicate that the improved model succeeds in capturing the volumetric deformation behavior under various confining/consolidation pressure conditions for both dense and loose sands. Furthermore, to examine the importance of the improved deviatoric hardening model, it is combined with the bounding surface plasticity theory to investigate the mechanical response of loose sand under complex cyclic loadings and different initial consolidation pressures. It is proved that the proposed pressure-dependent deviatoric hardening law is capable of predicting the volumetric deformation characteristics to a satisfactory degree and plays an important role in the simulation of complex deformations for granular geomaterials.
A refined deviatoric hardening plastic model for sand
The classical deviatoric hardening models are capable of characterizing the mechanical response of granular materials for a broad range of degrees of compaction. This work finds that it has limitations in accurately predicting the volumetric deformation characteristics under a wide range of confining/consolidation pressures. The issue stems from the pressure independent hardening law in the classical deviatoric hardening model. To overcome this problem, we propose a refined deviatoric hardening model in which a pressure-dependent hardening law is developed based on experimental observations. Comparisons between numerical results and laboratory triaxial tests indicate that the improved model succeeds in capturing the volumetric deformation behavior under various confining/consolidation pressure conditions for both dense and loose sands. Furthermore, to examine the importance of the improved deviatoric hardening model, it is combined with the bounding surface plasticity theory to investigate the mechanical response of loose sand under complex cyclic loadings and different initial consolidation pressures. It is proved that the proposed pressure-dependent deviatoric hardening law is capable of predicting the volumetric deformation characteristics to a satisfactory degree and plays an important role in the simulation of complex deformations for granular geomaterials.
A refined deviatoric hardening plastic model for sand
Min Wang (Autor:in) / Tongming Qu (Autor:in) / Yuntian Feng (Autor:in) / Teng Liang (Autor:in) / Liangtong Zhan (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Modeling sand behavior in constant deviatoric stress loading
British Library Conference Proceedings | 2007
|Deviatoric Stress Response Envelopes from Multiaxial Tests on Sand
British Library Conference Proceedings | 2007
|Deviatoric Stress Response Envelopes from Multiaxial Tests on Sand
Springer Verlag | 2007
|DOAJ | 2019
|