Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Study on Hydrologic Effects of Land Use Change Using a Distributed Hydrologic Model in the Dynamic Land Use Mode
It is reasonable to simulate the hydrologic cycle in regions with drastic land use change using a distributed hydrologic model in the dynamic land use mode (dynamic mode). A new dynamic mode is introduced into an object-oriented modularized model for basin-scale water cycle simulation (MODCYCLE), a distributed hydrologic model based on sub-watersheds, and the hydrological response unit (HRU). The new mode can linearly interpolate data for the years without land use data and consistently transfer HRU water storage between two adjacent years after a land use data update. The hydrologic cycle simulation of the Sanjiang Plain in China was carried out from 2000 to 2014 in the dynamic mode using land use maps of 2000, 2005, 2010, and 2014. Through calibration and validation, the performance of the model reached a satisfactory level. Replacing the land use data of the calibrated model using that of the year 2000, a comparison model in the static land use mode (static mode) was built (i.e., land use unchanged since 2000). The hydrologic effects of land use change were analyzed using the two models. If the land use pattern remained unchanged from 2000, despite the average annual runoff increasing by 4% and the average annual evapotranspiration decreasing by 4% in this region only, the groundwater storage of the plain areas in 2014 would increase by 4.6 bil. m3 compared to that in 2000, rather than the actual decrease of 4.7 bil. m3. The results show that the fluxes associated with groundwater are obviously more disturbed by land use change in the Sanjiang Plain. This study suggests that the dynamic mode should be used to simulate the hydrologic cycle in regions with drastic land use change, and the consistent transfer of HRU water storage may be considered in the dynamic mode.
Study on Hydrologic Effects of Land Use Change Using a Distributed Hydrologic Model in the Dynamic Land Use Mode
It is reasonable to simulate the hydrologic cycle in regions with drastic land use change using a distributed hydrologic model in the dynamic land use mode (dynamic mode). A new dynamic mode is introduced into an object-oriented modularized model for basin-scale water cycle simulation (MODCYCLE), a distributed hydrologic model based on sub-watersheds, and the hydrological response unit (HRU). The new mode can linearly interpolate data for the years without land use data and consistently transfer HRU water storage between two adjacent years after a land use data update. The hydrologic cycle simulation of the Sanjiang Plain in China was carried out from 2000 to 2014 in the dynamic mode using land use maps of 2000, 2005, 2010, and 2014. Through calibration and validation, the performance of the model reached a satisfactory level. Replacing the land use data of the calibrated model using that of the year 2000, a comparison model in the static land use mode (static mode) was built (i.e., land use unchanged since 2000). The hydrologic effects of land use change were analyzed using the two models. If the land use pattern remained unchanged from 2000, despite the average annual runoff increasing by 4% and the average annual evapotranspiration decreasing by 4% in this region only, the groundwater storage of the plain areas in 2014 would increase by 4.6 bil. m3 compared to that in 2000, rather than the actual decrease of 4.7 bil. m3. The results show that the fluxes associated with groundwater are obviously more disturbed by land use change in the Sanjiang Plain. This study suggests that the dynamic mode should be used to simulate the hydrologic cycle in regions with drastic land use change, and the consistent transfer of HRU water storage may be considered in the dynamic mode.
Study on Hydrologic Effects of Land Use Change Using a Distributed Hydrologic Model in the Dynamic Land Use Mode
Qingyan Sun (Autor:in) / Chuiyu Lu (Autor:in) / Hui Guo (Autor:in) / Lingjia Yan (Autor:in) / Xin He (Autor:in) / Tao Qin (Autor:in) / Chu Wu (Autor:in) / Qinghua Luan (Autor:in) / Bo Zhang (Autor:in) / Zepeng Li (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Assessing long‐term hydrologic effects of land use change
Wiley | 1997
|British Library Conference Proceedings | 2005
|British Library Conference Proceedings | 2005
|Modeling Evapotranspiration of Two Land Covers Using Integrated Hydrologic Model
British Library Online Contents | 2010
|A Watershed Scale Hydrologic Model for Drained Forested Land
British Library Conference Proceedings | 1995
|