Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
With the rapid development of China’s manufacturing, energy consumption has increased rapidly, and this has become a major bottleneck affecting the sustainable development of China’s economy. This paper deduces and constructs a homologous grey prediction model with one variable and one first order equation (HGEM(1,1)) for forecasting the total energy consumption of China’s manufacturing based on the Grey system theory. Both parameter estimation (PE) and the deduction of the final restored expression (FRE) of the HGEM(1,1) model are all from the time response expression of the whitenization differential equation, which solves the ‘non-homologous’ defects of PE and FRE with traditional grey prediction models. HGEM(1,1) has good performance and can unbiasedly simulate a homogeneous/non-homogeneous exponential function sequence and a linear function sequence. Then, the HGEM(1,1)model is used to simulate and forecast the total energy consumption of China’s energy manufacturing, and the results show that the comprehensive performance of this model is much better than that of the classic Grey Model with one variable and single order equation, GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, we forecast the total energy consumption of China’s manufacturing industry during the years 2018–2024. The results show that the total energy consumption in China’s manufacturing is slowing down but is still too large. For this, some measures, such as optimizing the manufacturing structure and speeding up the development and promotion of energy saving and emission reduction technologies, to ensure the effective supply of energy in China’s manufacturing industry are suggested.
With the rapid development of China’s manufacturing, energy consumption has increased rapidly, and this has become a major bottleneck affecting the sustainable development of China’s economy. This paper deduces and constructs a homologous grey prediction model with one variable and one first order equation (HGEM(1,1)) for forecasting the total energy consumption of China’s manufacturing based on the Grey system theory. Both parameter estimation (PE) and the deduction of the final restored expression (FRE) of the HGEM(1,1) model are all from the time response expression of the whitenization differential equation, which solves the ‘non-homologous’ defects of PE and FRE with traditional grey prediction models. HGEM(1,1) has good performance and can unbiasedly simulate a homogeneous/non-homogeneous exponential function sequence and a linear function sequence. Then, the HGEM(1,1)model is used to simulate and forecast the total energy consumption of China’s energy manufacturing, and the results show that the comprehensive performance of this model is much better than that of the classic Grey Model with one variable and single order equation, GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, we forecast the total energy consumption of China’s manufacturing industry during the years 2018–2024. The results show that the total energy consumption in China’s manufacturing is slowing down but is still too large. For this, some measures, such as optimizing the manufacturing structure and speeding up the development and promotion of energy saving and emission reduction technologies, to ensure the effective supply of energy in China’s manufacturing industry are suggested.
Forecasting the Energy Consumption of China’s Manufacturing Using a Homologous Grey Prediction Model
2017
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
the energy consumption of China’s manufacturing , homologous grey prediction model , simulation and prediction , suggestions for sustainable development of China’s manufacturing , Environmental effects of industries and plants , TD194-195 , Renewable energy sources , TJ807-830 , Environmental sciences , GE1-350
Metadata by DOAJ is licensed under CC BY-SA 1.0
Forecasting Japan’s Solar Energy Consumption Using a Novel Incomplete Gamma Grey Model
DOAJ | 2019
|Analyzing and Forecasting Energy Consumption in China’s Manufacturing Industry and Its Subindustries
DOAJ | 2018
|Forecasting Clean Energy Consumption in China by 2025: Using Improved Grey Model GM (1, N)
DOAJ | 2020
|Nonadditive Grey Prediction Using Functional-Link Net for Energy Demand Forecasting
DOAJ | 2017
|Grey Multivariable Prediction Model of Energy Consumption with Different Fractional Orders
DOAJ | 2022
|