Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Compressive Performance of RC Columns Strengthened with High-Strength Stainless Steel Wire Mesh-ECC under Small Eccentric Compression Load
In this research, a novel composite material, high-strength stainless steel wire mesh-ECC, is proposed and designed to strengthen RC columns. The small eccentric compressive performance of RC columns strengthened with high-strength stainless steel wire mesh-ECC was investigated through compression tests and compared with unstrengthened columns and RC columns strengthened with ECC. Six columns were designed and tested, and the test parameters contained different strengthened methods, eccentricity ratios, and reinforcement ratios of longitudinal high-strength stainless steel strand. The failure patterns, load-carrying capacity, strain of concrete/ECC and reinforcement, etc., were analyzed based on the test results. The high performance of the high-strength stainless steel wire mesh-ECC and the advantages of the proposed strengthened method, including good ductility, excellent crack-control ability and satisfactory failure patterns, were demonstrated when compared with the specimens strengthened with ECC. The stainless steel wire mesh-ECC-reinforced layer can have effective constraint columns and can control the crack ability. The cracking load of the stainless steel wire mesh-ECC-reinforced column is 100.0–113.3% higher than that of the unreinforced column, and the peaking load is 99.8–108.0% higher than that of the unreinforced column. The stainless steel wire mesh-ECC-reinforced column shows good ductile failure characteristics, and compared with the unreinforced column, the ductility is increased by 75.6–77.8%. Based on the analysis of the strain distribution and failure patterns, the mechanical mechanism of RC columns strengthened with the novel composite material high-strength stainless steel wire mesh-ECC is proposed.
Compressive Performance of RC Columns Strengthened with High-Strength Stainless Steel Wire Mesh-ECC under Small Eccentric Compression Load
In this research, a novel composite material, high-strength stainless steel wire mesh-ECC, is proposed and designed to strengthen RC columns. The small eccentric compressive performance of RC columns strengthened with high-strength stainless steel wire mesh-ECC was investigated through compression tests and compared with unstrengthened columns and RC columns strengthened with ECC. Six columns were designed and tested, and the test parameters contained different strengthened methods, eccentricity ratios, and reinforcement ratios of longitudinal high-strength stainless steel strand. The failure patterns, load-carrying capacity, strain of concrete/ECC and reinforcement, etc., were analyzed based on the test results. The high performance of the high-strength stainless steel wire mesh-ECC and the advantages of the proposed strengthened method, including good ductility, excellent crack-control ability and satisfactory failure patterns, were demonstrated when compared with the specimens strengthened with ECC. The stainless steel wire mesh-ECC-reinforced layer can have effective constraint columns and can control the crack ability. The cracking load of the stainless steel wire mesh-ECC-reinforced column is 100.0–113.3% higher than that of the unreinforced column, and the peaking load is 99.8–108.0% higher than that of the unreinforced column. The stainless steel wire mesh-ECC-reinforced column shows good ductile failure characteristics, and compared with the unreinforced column, the ductility is increased by 75.6–77.8%. Based on the analysis of the strain distribution and failure patterns, the mechanical mechanism of RC columns strengthened with the novel composite material high-strength stainless steel wire mesh-ECC is proposed.
Compressive Performance of RC Columns Strengthened with High-Strength Stainless Steel Wire Mesh-ECC under Small Eccentric Compression Load
Xinling Wang (Autor:in) / Yunpu Li (Autor:in) / Yaokang Zhao (Autor:in) / Yaoxin Wei (Autor:in) / Jiajun Fan (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Eccentric compression tests on high strength duplex stainless steel columns
British Library Conference Proceedings | 2012
|Behavior of GFRP Strengthened Reinforced Concrete Columns under Large Eccentric Compression Load
Trans Tech Publications | 2012
|Behavior of GFRP Strengthened Reinforced Concrete Columns under Large Eccentric Compression Load
British Library Conference Proceedings | 2012
|Failure load of high strength concrete (HSC) columns under eccentric compression
British Library Online Contents | 1996
|