Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Natural Vanadium–Titanium Magnetite Activated Peroxydisulfate and Peroxymonosulfate for Acid Orange II Degradation: Different Activation Mechanisms and Influencing Factors
Persulfate-based advanced oxidation processes have emerged as a promising approach for the degradation of organic pollutants in aqueous environments due to their ability to generate sulfate radicals (SO4−·) within catalytic systems. In this study, peroxydisulfate (PDS) and peroxymonosulfate (PMS) were investigated with the natural vanadium–titanium magnetite (VTM) as the activator for the degradation of acid orange II. The degradation efficiency increased with higher dosages of VTM or persulfate (both PDS and PMS) at lower concentrations (below 10 mM). However, excessive PMS (higher than 10 mM) in the PMS/VTM system led to the self-consumption of free radicals, significantly inhibiting the degradation of acid orange II. The VTM-activated PDS or PMS maintained an effective degradation of acid orange II in a wide pH range (3~11), suggesting remarkable pH stability. The SO4−· was the main active species in the PDS/VTM system, while hydroxyl radical (·OH) also contributed significantly to the PMS/VTM system. In addition, PMS exhibited better thermal stability during VTM activation. Coexisting ions in an aqueous environment such as bicarbonate (HCO3–), carbonate (CO32–), and hydrogen phosphate (HPO42–) had obvious effects on persulfate activation. Our study systematically investigated the different activation processes and influencing factors associated with PDS and PMS when the natural VTM was used as a catalyst, thereby providing new insights into the persulfate-mediated degradation of organic pollutants in aqueous environments.
Natural Vanadium–Titanium Magnetite Activated Peroxydisulfate and Peroxymonosulfate for Acid Orange II Degradation: Different Activation Mechanisms and Influencing Factors
Persulfate-based advanced oxidation processes have emerged as a promising approach for the degradation of organic pollutants in aqueous environments due to their ability to generate sulfate radicals (SO4−·) within catalytic systems. In this study, peroxydisulfate (PDS) and peroxymonosulfate (PMS) were investigated with the natural vanadium–titanium magnetite (VTM) as the activator for the degradation of acid orange II. The degradation efficiency increased with higher dosages of VTM or persulfate (both PDS and PMS) at lower concentrations (below 10 mM). However, excessive PMS (higher than 10 mM) in the PMS/VTM system led to the self-consumption of free radicals, significantly inhibiting the degradation of acid orange II. The VTM-activated PDS or PMS maintained an effective degradation of acid orange II in a wide pH range (3~11), suggesting remarkable pH stability. The SO4−· was the main active species in the PDS/VTM system, while hydroxyl radical (·OH) also contributed significantly to the PMS/VTM system. In addition, PMS exhibited better thermal stability during VTM activation. Coexisting ions in an aqueous environment such as bicarbonate (HCO3–), carbonate (CO32–), and hydrogen phosphate (HPO42–) had obvious effects on persulfate activation. Our study systematically investigated the different activation processes and influencing factors associated with PDS and PMS when the natural VTM was used as a catalyst, thereby providing new insights into the persulfate-mediated degradation of organic pollutants in aqueous environments.
Natural Vanadium–Titanium Magnetite Activated Peroxydisulfate and Peroxymonosulfate for Acid Orange II Degradation: Different Activation Mechanisms and Influencing Factors
Zheng Zhang (Autor:in) / Libin Zhao (Autor:in) / Jingyuan Tian (Autor:in) / Shaojie Ren (Autor:in) / Wei Zhang (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Vanadium titano-magnetite smelting slag activation method
Europäisches Patentamt | 2021
|Influence of Nitrite on Ultraviolet-Activated Peroxydisulfate Degradation of 2,4-Dichlorophenol
American Chemical Society | 2023
|Degradation of methylene blue by activated peroxymonosulfate by natural mineral fibrous brucite
DOAJ | 2025
|