Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Design Guideline for Flexible Industrial Buildings Integrating Industry 4.0 Parameters
The emergence of Industry 4.0 can contribute to sustainable development, but most concepts have not yet received much attention in industrial building design. Industry 4.0 aims to realize production in batch size of one and product individualization on demand. Constant reconfiguration and expansion of production systems demand highly flexible building structures to prolong service life and reduce economic and environmental impacts. However, most research and tools focus on either production system or building optimization. There is a lack of holistic approaches that combine these two aspects. This paper presents a systematic design guideline for flexible industrial buildings towards the requirements of Industry 4.0, integrating building and production planning. The methodology employs literature research and a multiple case study based on expert interviews. The design guideline is presented in the form of a categorized parameter catalogue that classifies the results, on the one hand, into the levels of (O) objectives, (T) technical parameters and (P) planning process, and on the other hand, into (S) success factors, (I) suggestions for improvement and (D) deficits. The findings identify flexibility, structural design parameters and an integrated computational design approach at early design stage as potential success factors for integrated industrial building design (IIBD). The results set the basis to develop a multi-objective optimization and decision-making support tool for IIBD in future research.
Design Guideline for Flexible Industrial Buildings Integrating Industry 4.0 Parameters
The emergence of Industry 4.0 can contribute to sustainable development, but most concepts have not yet received much attention in industrial building design. Industry 4.0 aims to realize production in batch size of one and product individualization on demand. Constant reconfiguration and expansion of production systems demand highly flexible building structures to prolong service life and reduce economic and environmental impacts. However, most research and tools focus on either production system or building optimization. There is a lack of holistic approaches that combine these two aspects. This paper presents a systematic design guideline for flexible industrial buildings towards the requirements of Industry 4.0, integrating building and production planning. The methodology employs literature research and a multiple case study based on expert interviews. The design guideline is presented in the form of a categorized parameter catalogue that classifies the results, on the one hand, into the levels of (O) objectives, (T) technical parameters and (P) planning process, and on the other hand, into (S) success factors, (I) suggestions for improvement and (D) deficits. The findings identify flexibility, structural design parameters and an integrated computational design approach at early design stage as potential success factors for integrated industrial building design (IIBD). The results set the basis to develop a multi-objective optimization and decision-making support tool for IIBD in future research.
Design Guideline for Flexible Industrial Buildings Integrating Industry 4.0 Parameters
Julia Reisinger (Autor:in) / Patrick Hollinsky (Autor:in) / Iva Kovacic (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Conference Proceedings | 2008
|INDUSTRY DATA - R.S. Means: Industrial buildings
Online Contents | 2004
Climate resilience buildings: guideline for management of overheating risk in residential buildings
BASE | 2021
|